Dinatural transformation

{{Short description|Generalization of natural transformations}}In category theory, a branch of mathematics, a dinatural transformation \alpha between two functors

:S,T : C^{\mathrm{op}}\times C\to D,

written

:\alpha : S\ddot\to T,

is a function that to every object c of C associates an arrow

:\alpha_c : S(c,c)\to T(c,c) of D

and satisfies the following coherence property: for every morphism f:c\to c' of C the diagram

center

commutes.{{cite book|url={{Google books|gfI-BAAAQBAJ|page=218|plainurl=yes}} |last1=Mac Lane |first1=Saunders |author-link = Saunders Mac Lane|title=Categories for the working mathematician |date=2013 |publisher=Springer Science & Business Media |page=218}}

The composition of two dinatural transformations need not be dinatural.

See also

Notes

{{Reflist}}

References

  • {{citation

|url={{Google books|cfIuEAAAQBAJ&dq|page=23|plainurl=yes}}

| isbn=9781108746120

| date=22 July 2021

| publisher=Cambridge University Press

| first1=Loregian|last1=Fosco| title=(Co)end Calculus

| doi=10.1017/9781108778657

|

arxiv=1501.02503 | s2cid=237839003

}}

  • {{cite book |url={{Google books|vTF7CwAAQBAJ|page=126|plainurl=yes}} |doi=10.1007/BFb0060443 |chapter=Dinatural transformations |title=Reports of the Midwest Category Seminar IV |series=Lecture Notes in Mathematics |date=1970 |last1=Dubuc |first1=Eduardo |last2=Street |first2=Ross |volume=137 |pages=126–137 |isbn=978-3-540-04926-5 }}