Dinatural transformation
{{Short description|Generalization of natural transformations}}In category theory, a branch of mathematics, a dinatural transformation between two functors
:
written
:
is a function that to every object of associates an arrow
: of
and satisfies the following coherence property: for every morphism of the diagram
The composition of two dinatural transformations need not be dinatural.
See also
Notes
{{Reflist}}
References
- {{citation
|url={{Google books|cfIuEAAAQBAJ&dq|page=23|plainurl=yes}}
| isbn=9781108746120
| date=22 July 2021
| publisher=Cambridge University Press
| first1=Loregian|last1=Fosco| title=(Co)end Calculus
| doi=10.1017/9781108778657
|
arxiv=1501.02503 | s2cid=237839003
}}
- {{cite book |url={{Google books|vTF7CwAAQBAJ|page=126|plainurl=yes}} |doi=10.1007/BFb0060443 |chapter=Dinatural transformations |title=Reports of the Midwest Category Seminar IV |series=Lecture Notes in Mathematics |date=1970 |last1=Dubuc |first1=Eduardo |last2=Street |first2=Ross |volume=137 |pages=126–137 |isbn=978-3-540-04926-5 }}
External links
- {{nlab|id=dinatural+transformation|title=dinatural transformation}}
{{categorytheory-stub}}