Dirichlet character
{{Short description|Complex-valued arithmetic function}}
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus (where is a positive integer) if for all integers and :This is the standard definition; e.g. Davenport p.27; Landau p. 109; Ireland and Rosen p. 253
- that is, is completely multiplicative.
\chi(a)
\begin{cases}
=0 &\text{if } \gcd(a,m)>1\\
\ne 0&\text{if }\gcd(a,m)=1.
\end{cases} (gcd is the greatest common divisor)
- ; that is, is periodic with period .
The simplest possible character, called the principal character, usually denoted , (see Notation below) exists for all moduli:Note the special case of modulus 1: the unique character mod 1 is the constant 1; all other characters are 0 at 0
:
\chi_0(a)=
\begin{cases}
0 &\text{if } \gcd(a,m)>1\\
1 &\text{if } \gcd(a,m)=1.
\end{cases}
The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions.Davenport p. 1An English translation is in External Links
Notation
is Euler's totient function.{{Cite web |last=Weisstein |first=Eric W. |title=Totient Function |url=https://mathworld.wolfram.com/TotientFunction.html |access-date=2025-02-09 |website=mathworld.wolfram.com |language=en}}
is a complex primitive n-th root of unity:
:
\zeta_n^n=1, but
is the group of units mod . It has order
is the group of Dirichlet characters mod .
etc. are prime numbers.
is a standardUsed in Davenport, Landau, Ireland and Rosen abbreviation is equivalent to for
etc. are Dirichlet characters. (the lowercase Greek letter chi for "character")
There is no standard notation for Dirichlet characters that includes the modulus. In many contexts (such as in the proof of Dirichlet's theorem) the modulus is fixed. In other contexts, such as this article, characters of different moduli appear. Where appropriate this article employs a variation of [https://lmfdb.org/knowledge/show/character.dirichlet.conrey Conrey labeling] (introduced by Brian Conrey and used by the [https://www.lmfdb.org/ LMFDB]).
In this labeling characters for modulus are denoted where the index is described in the section the group of characters below. In this labeling, denotes an unspecified character and
denotes the principal character mod .
Relation to group characters
The word "character" is used several ways in mathematics. In this section it refers to a homomorphism from a group (written multiplicatively) to the multiplicative group of the field of complex numbers:
:
The set of characters is denoted If the product of two characters is defined by pointwise multiplication the identity by the trivial character and the inverse by complex inversion then becomes an abelian group.See Multiplicative character
If is a finite abelian group thenIreland and Rosen p. 253-254 there is an isomorphism , and the orthogonality relations:See Character group#Orthogonality of characters
:
\begin{cases}
|A|&\text{ if } \eta=\eta_0\\
0&\text{ if } \eta\ne\eta_0
\end{cases}
and
\begin{cases}
|A|&\text{ if } a=1\\
0&\text{ if } a\ne 1.
\end{cases}
The elements of the finite abelian group are the residue classes where
A group character can be extended to a Dirichlet character by defining
:
\chi(a)=
\begin{cases}
0 &\text{if } [a]\not\in(\mathbb{Z}/m\mathbb{Z})^\times&\text{i.e. }(a,m)> 1\\
\rho([a])&\text{if } [a]\in(\mathbb{Z}/m\mathbb{Z})^\times&\text{i.e. }(a,m)= 1,
\end{cases}
and conversely, a Dirichlet character mod defines a group character on
Paraphrasing Davenport,Davenport p. 27 Dirichlet characters can be regarded as a particular case of Abelian group characters. But this article follows Dirichlet in giving a direct and constructive account of them. This is partly for historical reasons, in that Dirichlet's work preceded by several decades the development of group theory, and partly for a mathematical reason, namely that the group in question has a simple and interesting structure which is obscured if one treats it as one treats the general Abelian group.
Elementary facts
4) Since property 2) says so it can be canceled from both sides of :
5) Property 3) is equivalent to
:if then
6) Property 1) implies that, for any positive integer
:
7) Euler's theorem states that if then Therefore,
:
That is, the nonzero values of are -th roots of unity:
:
\chi(a)=
\begin{cases}
0 &\text{if } \gcd(a,m)>1\\
\zeta_{\phi(m)}^r&\text{if } \gcd(a,m)=1
\end{cases}
for some integer which depends on and . This implies there are only a finite number of characters for a given modulus.
8) If and are two characters for the same modulus so is their product defined by pointwise multiplication:
: ( obviously satisfies 1-3).In general, the product of a character mod and a character mod is a character mod
The principal character is an identity:
:
\chi\chi_0(a)=\chi(a)\chi_0(a)=
\begin{cases}
0 \times 0 &=\chi(a)&\text{if } \gcd(a,m)>1\\
\chi(a)\times 1&=\chi(a) &\text{if } \gcd(a,m)=1.
\end{cases}
9) Let denote the inverse of in .
Then
:
so which extends 6) to all integers.
The complex conjugate of a root of unity is also its inverse (see here for details), so for
: ( also obviously satisfies 1-3).
Thus for all integers
:
\chi(a)\overline{\chi}(a)=
\begin{cases}
0 &\text{if } \gcd(a,m)>1\\
1 &\text{if } \gcd(a,m)=1
\end{cases}; in other words .
10) The multiplication and identity defined in 8) and the inversion defined in 9) turn the set of Dirichlet characters for a given modulus into a finite abelian group.
The group of characters
There are three different cases because the groups have different structures depending on whether is a power of 2, a power of an odd prime, or the product of prime powers.Except for the use of the modified Conrie labeling, this section follows Davenport pp. 1-3, 27-30
= Powers of odd primes =
If is an odd number is cyclic of order ; a generator is called a primitive root mod .There is a primitive root mod which is a primitive root mod and all higher powers of . See, e.g., Landau p. 106
Let be a primitive root and for define the function (the index of ) by
:
:
For if and only if Since
: is determined by its value at
Let be a primitive -th root of unity. From property 7) above the possible values of are
These distinct values give rise to Dirichlet characters mod For define as
:
\chi_{q,r}(a)=
\begin{cases}
0 &\text{if } \gcd(a,q)>1\\
\omega_q^{\nu_q(r)\nu_q(a)}&\text{if } \gcd(a,q)=1.
\end{cases}
Then for and all and
: showing that is a character and
: which gives an explicit isomorphism
== Examples ''m'' = 3, 5, 7, 9 ==
2 is a primitive root mod 3. ()
:
so the values of are
:
\begin{array}
c|c|c|c|c|c|c |
a & 1 & 2 \\
\hline
\nu_3(a) & 0 & 1\\
\end{array}
.
The nonzero values of the characters mod 3 are
:
\begin{array}
c|c|c|c|c|c|c |
& 1 & 2 \\
\hline
\chi_{3,1} & 1 & 1 \\
\chi_{3,2} & 1 & -1 \\
\end{array}
2 is a primitive root mod 5. ()
:
so the values of are
:
\begin{array}
c|c|c|c|c|c|c |
a & 1 & 2 & 3 & 4 \\
\hline
\nu_5(a) & 0 & 1 & 3 & 2 \\
\end{array}
.
The nonzero values of the characters mod 5 are
:
\begin{array}
c|c|c|c|c|c|c |
& 1 & 2 & 3 & 4 \\
\hline
\chi_{5,1} & 1 & 1 & 1 & 1 \\
\chi_{5,2} & 1 & i & -i & -1\\
\chi_{5,3} & 1 & -i & i & -1\\
\chi_{5,4} & 1 & -1 & -1 & 1\\
\end{array}
3 is a primitive root mod 7. ()
:
so the values of are
:
\begin{array}
c|c|c|c|c|c|c |
a & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\nu_7(a) & 0 & 2 & 1 & 4 & 5 & 3 \\
\end{array}
.
The nonzero values of the characters mod 7 are ()
:
\begin{array}
c|c|c|c|c|c|c |
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\chi_{7,1} & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{7,2} & 1 & -\omega & \omega^2 & \omega^2 & -\omega & 1 \\
\chi_{7,3} & 1 & \omega^2 & \omega & -\omega & -\omega^2 & -1 \\
\chi_{7,4} & 1 & \omega^2 & -\omega & -\omega & \omega^2 & 1 \\
\chi_{7,5} & 1 & -\omega & -\omega^2 & \omega^2 & \omega & -1 \\
\chi_{7,6} & 1 & 1 & -1 & 1 & -1 & -1 \\
\end{array}
.
2 is a primitive root mod 9. ()
:
so the values of are
:
\begin{array}
c|c|c|c|c|c|c |
a & 1 & 2 &4 & 5&7&8 \\
\hline
\nu_9(a) & 0 & 1 & 2 & 5&4&3 \\
\end{array}
.
The nonzero values of the characters mod 9 are ()
:
\begin{array}
c|c|c|c|c|c|c |
& 1 & 2 & 4 & 5 &7 & 8 \\
\hline
\chi_{9,1} & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{9,2} & 1 & \omega & \omega^2 & -\omega^2 & -\omega & -1 \\
\chi_{9,4} & 1 & \omega^2 & -\omega & -\omega & \omega^2 & 1 \\
\chi_{9,5} & 1 & -\omega^2 & -\omega & \omega & \omega^2 & -1 \\
\chi_{9,7} & 1 & -\omega & \omega^2 & \omega^2 & -\omega & 1 \\
\chi_{9,8} & 1 & -1 & 1 & -1 & 1 & -1 \\
\end{array}
.
= Powers of 2 =
is the trivial group with one element. is cyclic of order 2. For 8, 16, and higher powers of 2, there is no primitive root; the powers of 5 are the units and their negatives are the units Landau pp. 107-108
For example
:
:
:
Let ; then is the direct product of a cyclic group of order 2 (generated by −1) and a cyclic group of order (generated by 5).
For odd numbers define the functions and by
:
:
For odd and if and only if and
For odd the value of is determined by the values of and
Let be a primitive -th root of unity. The possible values of are
These distinct values give rise to Dirichlet characters mod For odd define by
:
\chi_{q,r}(a)=
\begin{cases}
0 &\text{if } a\text{ is even}\\
(-1)^{\nu_0(r)\nu_0(a)}\omega_q^{\nu_q(r)\nu_q(a)}&\text{if } a \text{ is odd}.
\end{cases}
Then for odd and and all and
: showing that is a character and
: showing that
== Examples ''m'' = 2, 4, 8, 16 ==
The only character mod 2 is the principal character .
−1 is a primitive root mod 4 ()
:
\begin{array}
a & 1 & 3 \\
\hline
\nu_0(a) & 0 & 1 \\
\end{array}
The nonzero values of the characters mod 4 are
:
\begin{array}
c|c|c|c|c|c|c |
& 1 & 3 \\
\hline
\chi_{4,1} & 1 & 1 \\
\chi_{4,3} & 1 & -1 \\
\end{array}
−1 is and 5 generate the units mod 8 ()
:
\begin{array}
a & 1 & 3 & 5 & 7 \\
\hline
\nu_0(a) & 0 & 1 & 0 & 1 \\
\nu_8(a) & 0 & 1 & 1 & 0 \\
\end{array}
.
The nonzero values of the characters mod 8 are
:
\begin{array}
c|c|c|c|c|c|c |
& 1 & 3 & 5 & 7 \\
\hline
\chi_{8,1} & 1 & 1 & 1 & 1 \\
\chi_{8,3} & 1 & 1 & -1 & -1 \\
\chi_{8,5} & 1 & -1 & -1 & 1 \\
\chi_{8,7} & 1 & -1 & 1 & -1 \\
\end{array}
−1 and 5 generate the units mod 16 ()
:
\begin{array}
a & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline
\nu_0(a) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\nu_{16}(a) & 0 & 3 & 1 & 2 & 2 & 1 & 3 & 0 \\
\end{array}
.
The nonzero values of the characters mod 16 are
:
\begin{array}
& 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline
\chi_{16,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{16,3} & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\chi_{16,5} & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\chi_{16,7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\chi_{16,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\chi_{16,11} & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\chi_{16,13} & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\chi_{16,15} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\end{array}
.
= Products of prime powers =
Let where
:
This means that 1) there is a one-to-one correspondence between
and 2) multiplication mod
:
:
The Chinese remainder theorem (CRT) implies that the
There are subgroups
:
\begin{cases}
a &\mod q_i\\
1&\mod q_j, j\ne i.
\end{cases}
:
:
\begin{cases}
(\mathbb{Z}/q_i\mathbb{Z})^\times &\mod q_i\\
\{1\}&\mod q_j, j\ne i.
\end{cases}
Then
and every
Every
:
\begin{array}
c|c|c|c|c|c|c |
& 1 & 9 & 17 & 33 \\
\hline
1 & 1 & 9 & 17 & 33 \\
11 & 11 & 19 & 27 & 3 \\
21 & 21 & 29 & 37 & 13 \\
31 & 31 & 39 & 7 & 23 \\
\end{array}
If
:
showing that every character mod
For
:
Then for
:
:
== Examples ''m'' = 15, 24, 40 ==
The factorization of the characters mod 15 is
:
\begin{array}
c|c|c|c|c|c|c |
& \chi_{5,1} & \chi_{5,2} & \chi_{5,3} & \chi_{5,4} \\
\hline
\chi_{3,1} & \chi_{15,1} & \chi_{15,7} & \chi_{15,13} & \chi_{15,4} \\
\chi_{3,2} & \chi_{15,11} & \chi_{15,2} & \chi_{15,8} & \chi_{15,14} \\
\end{array}
The nonzero values of the characters mod 15 are
:
\begin{array}
& 1 & 2 & 4 & 7 & 8 & 11 & 13 & 14 \\
\hline
\chi_{15,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{15,2} & 1 & -i & -1 & i & i & -1 & -i & 1 \\
\chi_{15,4} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
\chi_{15,7} & 1 & i & -1 & i & -i & 1 & -i & -1 \\
\chi_{15,8} & 1 & i & -1 & -i & -i & -1 & i & 1 \\
\chi_{15,11} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 \\
\chi_{15,13} & 1 & -i & -1 & -i & i & 1 & i & -1 \\
\chi_{15,14} & 1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\
\end{array}
.
The factorization of the characters mod 24 is
:
\begin{array}
c|c|c|c|c|c|c |
& \chi_{8,1} & \chi_{8,3} & \chi_{8,5} & \chi_{8,7} \\
\hline
\chi_{3,1} & \chi_{24,1} & \chi_{24,19} & \chi_{24,13} & \chi_{24,7} \\
\chi_{3,2} & \chi_{24,17} & \chi_{24,11} & \chi_{24,5} & \chi_{24,23} \\
\end{array}
The nonzero values of the characters mod 24 are
:
\begin{array}
& 1 & 5 & 7 & 11 & 13 & 17 & 19 & 23 \\
\hline
\chi_{24,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{24,5} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
\chi_{24,7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\chi_{24,11} & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
\chi_{24,13} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
\chi_{24,17} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\chi_{24,19} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
\chi_{24,23} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\end{array}
.
The factorization of the characters mod 40 is
:
\begin{array}
c|c|c|c|c|c|c |
& \chi_{8,1} & \chi_{8,3} & \chi_{8,5} & \chi_{8,7} \\
\hline
\chi_{5,1} & \chi_{40,1} & \chi_{40,11} & \chi_{40,21} & \chi_{40,31} \\
\chi_{5,2} & \chi_{40,17} & \chi_{40,27} & \chi_{40,37} & \chi_{40,7} \\
\chi_{5,3} & \chi_{40,33} & \chi_{40,3} & \chi_{40,13} & \chi_{40,23} \\
\chi_{5,4} & \chi_{40,9} & \chi_{40,19} & \chi_{40,29} & \chi_{40,39} \\
\end{array}
The nonzero values of the characters mod 40 are
:
\begin{array}
& 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 & 21 & 23 & 27 & 29 & 31 & 33 & 37 & 39 \\
\hline
\chi_{40,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{40,3} & 1 & i & i & -1 & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 \\
\chi_{40,7} & 1 & i & -i & -1 & -1 & -i & i & 1 & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\chi_{40,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\chi_{40,11} & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 \\
\chi_{40,13} & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 & 1 & i & i & -1 \\
\chi_{40,17} & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 \\
\chi_{40,19} & 1 & -1 & 1 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 \\
\chi_{40,21} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 \\
\chi_{40,23} & 1 & -i & i & -1 & -1 & i & -i & 1 & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\chi_{40,27} & 1 & -i & -i & -1 & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 \\
\chi_{40,29} & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 \\
\chi_{40,31} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
\chi_{40,33} & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 \\
\chi_{40,37} & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 & 1 & -i & -i & -1 \\
\chi_{40,39} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
\end{array}
.
= Summary =
Let
There are
The identity
Each character mod
:
If
Also,because the formulas for
Orthogonality
The two orthogonality relations areSee #Relation to group characters above.
:
\begin{cases}
\phi(m)&\text{ if }\;\chi=\chi_0\\
0&\text{ if }\;\chi\ne\chi_0
\end{cases}
and
\begin{cases}
\phi(m)&\text{ if }\;a\equiv 1\pmod{m}\\
0&\text{ if }\;a\not\equiv 1\pmod{m}.
\end{cases}
The relations can be written in the symmetric form
:
\begin{cases}
\phi(m)&\text{ if }\;r\equiv 1\\
0&\text{ if }\;r\not\equiv 1
\end{cases}
and
\begin{cases}
\phi(m)&\text{ if }\;a\equiv 1\\
0&\text{ if }\;a\not\equiv 1.
\end{cases}
The first relation is easy to prove: If
:
because multiplying every element in a group by a constant element merely permutes the elements. See Group (mathematics) implying
:
The second relation can be proven directly in the same way, but requires a lemmaDavenport p. 30 (paraphrase) To prove [the second relation] one has to use ideas that we have used in the construction [as in this article or Landau pp. 109-114], or appeal to the basis theorem for abelian groups [as in Ireland & Rosen pp. 253-254]
:Given
The second relation has an important corollary: if
:
:
= \frac{1}{\phi(m)} \sum_{\chi} \chi(a^{-1}) \chi(n)
= \frac{1}{\phi(m)} \sum_{\chi} \chi(a^{-1}n)
= \begin{cases} 1, & n \equiv a \pmod{m} \\ 0, & n\not\equiv a\pmod{m},\end{cases}
That is
Classification of characters
= Conductor; Primitive and induced characters =
Any character mod a prime power is also a character mod every larger power. For example, mod 16This section follows Davenport pp. 35-36,
:
\begin{array}
& 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline
\chi_{16,3} & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\chi_{16,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\chi_{16,15} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\end{array}
We say that a character
The conductor of
A related phenomenon can happen with a character mod the product of primes; its nonzero values may be periodic with a smaller period.
For example, mod 15,
:
\begin{array}
& 1 & 2 &3 & 4 &5&6 & 7 & 8 &9&10 & 11&12 & 13 & 14 &15 \\
\hline
\chi_{15,8} & 1 & i &0 & -1 &0&0 & -i & -i &0&0 & -1 &0& i & 1 &0 \\
\chi_{15,11} & 1 & -1 &0 & 1 &0&0 & 1 & -1 &0&0 & -1 &0& 1 & -1 &0\\
\chi_{15,13} & 1 & -i &0 & -1 &0&0 & -i & i &0&0 & 1 &0 & i & -1 &0\\
\end{array}
.
The nonzero values of
:
\begin{array}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 &15\\
\hline
\chi_{15,11} & 1 & -1 & 0 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 1 & -1 &0\\
\chi_{3,2} & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 &0\\
\hline
\chi_{15,13} & 1 & -i & 0 & -1 & 0 & 0 & -i & i & 0 & 0 & 1 & 0 & i & -1 &0\\
\chi_{5,3} & 1 & -i & i & -1 & 0 & 1 & -i & i & -1 & 0 & 1 & -i & i & -1 &0\\
\end{array}
.
If a character mod
:
\begin{cases}
0&\text{ if }\gcd(a,m)>1\\
\chi_{q,\_}(a)&\text{ if }\gcd(a,m)=1
\end{cases}
, or equivalently as
its nonzero values are determined by the character mod
The smallest period of the nonzero values is the conductor of the character. For example, the conductor of
As in the prime-power case, if the conductor equals the modulus the character is primitive, otherwise imprimitive. If imprimitive it is induced from the character with the smaller modulus. For example,
The principal character is not primitive.Davenport classifies it as neither primitive nor imprimitive; the LMFDB induces it from
The character
Primitive characters often simplify (or make possible) formulas in the theories of L-functionsFor example the functional equation of
= Parity =
This distinction appears in the functional equation of the Dirichlet L-function.
= Order =
The order of a character is its order as an element of the group
= Real characters =
Dirichlet's original proof that
Real characters are Kronecker symbols;Davenport p. 40 for example, the principal character can be writtenThe notation
The real characters in the examples are:
== Principal ==
If
== Primitive ==
If the modulus is the absolute value of a fundamental discriminant there is a real primitive character (there are two if the modulus is a multiple of 8); otherwise if there are any primitive characters they are imaginary.Davenport pp. 38-40
== Imprimitive ==
Applications
= L-functions =
{{Main|Dirichlet L-function}}
The Dirichlet L-series for a character
:
This series only converges for
Dirichlet introduced the
= Modular forms and functions =
{{Main|Modular form}}
Dirichlet characters appear several places in the theory of modular forms and functions. A typical example isKoblittz, prop. 17b p. 127
Let
If
:
1)
and 2)
See Koblitz Ch. III.
define
:
Then
:
See theta series of a Dirichlet character for another example.
= Gauss sum =
{{Main|Gauss sum}}
The Gauss sum of a Dirichlet character modulo {{mvar|N}} is
:
It appears in the functional equation of the Dirichlet L-function.
= Jacobi sum =
{{Main|Jacobi sum}}
If
:
Jacobi sums can be factored into products of Gauss sums.
= Kloosterman sum =
{{Main|Kloosterman sum}}
If
:
If
Sufficient conditions
It is not necessary to establish the defining properties 1) – 3) to show that a function is a Dirichlet character.
= From Davenport's book =
If
:1)
:2)
:3) If
:4)
then
= Sárközy's Condition =
A Dirichlet character is a completely multiplicative function
for all positive integers
= Chudakov's Condition =
A Dirichlet character is a completely multiplicative function
is uniformly bounded, as
See also
{{col div|colwidth=30em}}
- Character sum
- Multiplicative group of integers modulo n
- Primitive root modulo n
- Multiplicative character
{{colend}}
Notes
{{reflist}}
References
- {{Cite journal
|last=Chudakov|first=N.G.
|title=Theory of the characters of number semigroups
|journal=J. Indian Math. Soc.|volume=20|pages=11–15}}
- {{cite book
| last=Davenport | first=Harold | author-link=Harold Davenport
| title=Multiplicative number theory | publisher=Markham | series=Lectures in advanced mathematics | volume=1 | location=Chicago | year=1967 | zbl=0159.06303 }}
- {{citation
| last1 = Ireland | first1 = Kenneth
| last2 = Rosen | first2 = Michael
| title = A Classical Introduction to Modern Number Theory (Second edition)
| publisher = Springer
| location = New York
| date = 1990
| isbn = 0-387-97329-X}}
- {{Cite journal|last1=Klurman|first1=Oleksiy|last2=Mangerel|first2=Alexander P.|title=Rigidity Theorems for Multiplicative Functions|journal=Math. Ann.|volume=372|issue=1|pages=651–697|doi=10.1007/s00208-018-1724-6|bibcode=2017arXiv170707817K|year=2017|arxiv=1707.07817|s2cid=119597384}}
- {{Cite book
|first=Neal
|last=Koblitz
|author-link=Neal Koblitz
|title=Introduction to Elliptic Curves and Modular Forms
|edition=2nd revised
|series=Graduate Texts in Mathematics
|volume=97
|publisher=Springer-Verlag
|year=1993
|isbn=0-387-97966-2
}}
- {{citation
| last1 = Landau | first1 = Edmund
| title = Elementary Number Theory
| publisher = Chelsea
| location = New York
| date = 1966}}
- {{Cite journal
|last=Sarkozy|first=Andras
|title=On multiplicative arithmetic functions satisfying a linear recursion
|journal=Studia Sci. Math. Hung.|volume=13|issue=1–2|pages=79–104}}
External links
- [https://arxiv.org/abs/0808.1408#:~:text=Dirichlet's%20proof%20of%20infinitely%20many,and%20the%20distribution%20of%20primes. English translation of Dirichlet's 1837 paper on primes in arithmetic progressions]
- [https://www.lmfdb.org/ LMFDB] Lists 30,397,486 Dirichlet characters of modulus up to 10,000 and their L-functions
{{Peter Gustav Lejeune Dirichlet}}