Doob decomposition theorem

{{Short description|Mathematical theorem in stochastic processes}}

In the theory of stochastic processes in discrete time, a part of the mathematical theory of probability, the Doob decomposition theorem gives a unique decomposition of every adapted and integrable stochastic process as the sum of a martingale and a predictable process (or "drift") starting at zero. The theorem was proved by and is named for Joseph L. Doob.{{harvtxt|Doob|1953}}, see {{harv|Doob|1990|pp=296−298}}

The analogous theorem in the continuous-time case is the Doob–Meyer decomposition theorem.

Statement

Let (\Omega, \mathcal{F}, \mathbb{P}) be a probability space, {{math|1=I = {0, 1, 2, ..., N}}} with N \in \N or I = \N_0 a finite or countably infinite index set, (\mathcal{F}_n)_{n \in I} a filtration of \mathcal{F}, and {{math|1=X = (Xn)nI}} an adapted stochastic process with {{math|E[{{!}}Xn{{!}}] < ∞}} for all {{math|nI}}. Then there exist a martingale {{math|1=M = (Mn)nI}} and an integrable predictable process {{math|1=A = (An)nI}} starting with {{math|1=A0 = 0}} such that {{math|1=Xn = Mn + An}} for every {{math|nI}}.

Here predictable means that {{math|An}} is \mathcal{F}_{n-1}-measurable for every {{math|nI \ {0}}}.

This decomposition is almost surely unique.{{harvtxt|Durrett|2010}}{{harv|Föllmer|Schied|2011|loc=Proposition 6.1}}{{harv|Williams|1991|loc=Section 12.11, part (a) of the Theorem}}

=Remark=

The theorem is valid word for word also for stochastic processes {{math|X}} taking values in the {{math|d}}-dimensional Euclidean space \Reals^d or the complex vector space \Complex^d. This follows from the one-dimensional version by considering the components individually.

Proof

= Existence =

Using conditional expectations, define the processes {{math|A}} and {{math|M}}, for every {{math|nI}}, explicitly by

{{NumBlk|:|A_n=\sum_{k=1}^n\bigl(\mathbb{E}[X_k\,|\,\mathcal{F}_{k-1}]-X_{k-1}\bigr)|{{EquationRef|1}}}}

and

{{NumBlk|:|M_n=X_0+\sum_{k=1}^n\bigl(X_k-\mathbb{E}[X_k\,|\,\mathcal{F}_{k-1}]\bigr),|{{EquationRef|2}}}}

where the sums for {{math|n {{=}} 0}} are empty and defined as zero. Here {{math|A}} adds up the expected increments of {{math|X}}, and {{math|M}} adds up the surprises, i.e., the part of every {{math|Xk}} that is not known one time step before.

Due to these definitions, {{math|An+1}} (if {{math|n + 1 ∈ I}}) and {{math|Mn}} are {{math|{{mathcal|F}}n}}-measurable because the process {{math|X}} is adapted, {{math|E[{{!}}An{{!}}] < ∞}} and {{math|E[{{!}}Mn{{!}}] < ∞}} because the process {{math|X}} is integrable, and the decomposition {{math|Xn {{=}} Mn + An}} is valid for every {{math|nI}}. The martingale property

:\mathbb{E}[M_n-M_{n-1}\,|\,\mathcal{F}_{n-1}]=0    a.s.

also follows from the above definition ({{EquationNote|2}}), for every {{math|nI \ {0}}}.

= Uniqueness =

To prove uniqueness, let {{math|X {{=}} M{{'}} + A{{'}}}} be an additional decomposition. Then the process {{math|Y :{{=}} MM{{'}} {{=}} A{{'}} − A}} is a martingale, implying that

:\mathbb{E}[Y_n\,|\,\mathcal{F}_{n-1}]=Y_{n-1}    a.s.,

and also predictable, implying that

:\mathbb{E}[Y_n\,|\,\mathcal{F}_{n-1}]= Y_n    a.s.

for any {{math|nI \ {0}}}. Since {{math|Y0 {{=}} A{{'}}0A0 {{=}} 0}} by the convention about the starting point of the predictable processes, this implies iteratively that {{math|Yn {{=}} 0}} almost surely for all {{math|nI}}, hence the decomposition is almost surely unique.

Corollary

A real-valued stochastic process {{math|X}} is a submartingale if and only if it has a Doob decomposition into a martingale {{math|M}} and an integrable predictable process {{math|A}} that is almost surely increasing.{{harv|Williams|1991|loc=Section 12.11, part (b) of the Theorem}} It is a supermartingale, if and only if {{math|A}} is almost surely decreasing.

=Proof=

If {{math|X}} is a submartingale, then

:\mathbb{E}[X_k\,|\,\mathcal{F}_{k-1}]\ge X_{k-1}    a.s.

for all {{math|kI \ {0}}}, which is equivalent to saying that every term in definition ({{EquationNote|1}}) of {{math|A}} is almost surely positive, hence {{math|A}} is almost surely increasing. The equivalence for supermartingales is proved similarly.

Example

Let {{math|X {{=}} (Xn)n\mathbb{N}_0}} be a sequence in independent, integrable, real-valued random variables. They are adapted to the filtration generated by the sequence, i.e. {{math|{{mathcal|F}}n {{=}} σ(X0, . . . , Xn)}} for all {{math|n\mathbb{N}_0}}. By ({{EquationNote|1}}) and ({{EquationNote|2}}), the Doob decomposition is given by

:A_n=\sum_{k=1}^{n}\bigl(\mathbb{E}[X_k]-X_{k-1}\bigr),\quad n\in\mathbb{N}_0,

and

:M_n=X_0+\sum_{k=1}^{n}\bigl(X_k-\mathbb{E}[X_k]\bigr),\quad n\in\mathbb{N}_0.

If the random variables of the original sequence {{math|X}} have mean zero, this simplifies to

:A_n=-\sum_{k=0}^{n-1}X_k    and    M_n=\sum_{k=0}^{n}X_k,\quad n\in\mathbb{N}_0,

hence both processes are (possibly time-inhomogeneous) random walks. If the sequence {{math|X {{=}} (Xn)n\mathbb{N}_0}} consists of symmetric random variables taking the values {{math|+1}} and {{math|−1}}, then {{math|X}} is bounded, but the martingale {{math|M}} and the predictable process {{math|A}} are unbounded simple random walks (and not uniformly integrable), and Doob's optional stopping theorem might not be applicable to the martingale {{math|M}} unless the stopping time has a finite expectation.

Application

In mathematical finance, the Doob decomposition theorem can be used to determine the largest optimal exercise time of an American option.{{harv|Lamberton|Lapeyre|2008|loc=Chapter 2: Optimal stopping problem and American options}}{{harv|Föllmer|Schied|2011|loc=Chapter 6: American contingent claims}} Let {{math|X {{=}} (X0, X1, . . . , XN)}} denote the non-negative, discounted payoffs of an American option in a {{math|N}}-period financial market model, adapted to a filtration {{math|

({{mathcal|F}}0, {{mathcal|F}}1, . . . , {{mathcal|F}}N)}}, and let {{math|\mathbb{Q}}} denote an equivalent martingale measure. Let {{math|U {{=}} (U0, U1, . . . , UN)}} denote the Snell envelope of {{math|X}} with respect to \mathbb{Q}. The Snell envelope is the smallest {{math|\mathbb{Q}}}-supermartingale dominating {{math|X}}{{harv|Föllmer|Schied|2011|loc=Proposition 6.10}} and in a complete financial market it represents the minimal amount of capital necessary to hedge the American option up to maturity.{{harv|Föllmer|Schied|2011|loc=Theorem 6.11}} Let {{math|U {{=}} M + A}} denote the Doob decomposition with respect to \mathbb{Q} of the Snell envelope {{math|U}} into a martingale {{math|M {{=}} (M0, M1, . . . , MN)}} and a decreasing predictable process {{math|A {{=}} (A0, A1, . . . , AN)}} with {{math|A0 {{=}} 0}}. Then the largest stopping time to exercise the American option in an optimal way{{harv|Lamberton|Lapeyre|2008|loc=Proposition 2.3.2}}{{harv|Föllmer|Schied|2011|loc=Theorem 6.21}} is

:\tau_{\text{max}}:=\begin{cases}N&\text{if }A_N=0,\\\min\{n\in\{0,\dots,N-1\}\mid A_{n+1}<0\}&\text{if } A_N<0.\end{cases}

Since {{math|A}} is predictable, the event {{math|{τmax {{=}} n} {{=}} {An {{=}} 0, An+1 < 0}}} is in {{math|{{mathcal|F}}n}} for every {{math|n ∈ {0, 1, . . . , N − 1}}}, hence {{math|τmax}} is indeed a stopping time. It gives the last moment before the discounted value of the American option will drop in expectation; up to time {{math|τmax}} the discounted value process {{math|U}} is a martingale with respect to \mathbb{Q}.

Generalization

The Doob decomposition theorem can be generalized from probability spaces to σ-finite measure spaces.{{harv|Schilling|2005|loc=Problem 23.11}}

Citations

{{Reflist|2}}

References

  • {{Citation | last=Doob | first=Joseph L. | author-link=Joseph L. Doob | year=1953 | title=Stochastic Processes | publisher=Wiley | place=New York | isbn=978-0-471-21813-5 | mr=0058896 | zbl=0053.26802 }}
  • {{Citation | last=Doob | first=Joseph L. | author-link=Joseph L. Doob | year=1990 | title=Stochastic Processes | publisher=John Wiley & Sons, Inc. | place=New York | edition= Wiley Classics Library | isbn=0-471-52369-0 | mr=1038526 | zbl=0696.60003 }}
  • {{Citation | last=Durrett | first=Rick | year=2010 | title=Probability: Theory and Examples | publisher=Cambridge University Press | edition=4. | series=Cambridge Series in Statistical and Probabilistic Mathematics | isbn=978-0-521-76539-8 | mr=2722836 | zbl=1202.60001 }}
  • {{Citation | last=Föllmer | first=Hans | last2=Schied | first2=Alexander | title=Stochastic Finance: An Introduction in Discrete Time | edition=3. rev. and extend | place=Berlin, New York | publisher=De Gruyter | year=2011 | series=De Gruyter graduate | isbn=978-3-11-021804-6 | mr=2779313 | zbl=1213.91006 }}
  • {{Citation | last=Lamberton | first=Damien | last2=Lapeyre | first2=Bernard | title=Introduction to Stochastic Calculus Applied to Finance | edition=2. | place=Boca Raton, FL | publisher=Chapman & Hall/CRC | year=2008 | series=Chapman & Hall/CRC financial mathematics series | isbn=978-1-58488-626-6 | mr=2362458 | zbl=1167.60001 }}
  • {{Citation | last=Schilling | first=René L. | title=Measures, Integrals and Martingales | place=Cambridge | publisher=Cambridge University Press | year=2005 | isbn=978-0-52185-015-5 | mr=2200059 | zbl=1084.28001 }}
  • {{Citation| author-link=David Williams (mathematician) | first=David | last=Williams | title=Probability with Martingales | publisher= Cambridge University Press | year=1991 | isbn =0-521-40605-6 | mr=1155402 | zbl=0722.60001 }}

{{Stochastic processes}}

Category:Theorems about stochastic processes

Category:Martingale theory

Category:Articles containing proofs