Double Mersenne number
{{short description|Number of form 2^(2^p-1)-1 with prime exponent}}
In mathematics, a double Mersenne number is a Mersenne number of the form
:
where p is prime.
Examples
The first four terms of the sequence of double Mersenne numbers areChris Caldwell, [http://primes.utm.edu/mersenne/index.html#unknown Mersenne Primes: History, Theorems and Lists] at the Prime Pages. {{OEIS|id=A077586}}:
:
:
:
:
Double Mersenne primes
{{Infobox integer sequence
| name = Double Mersenne primes
| terms_number = 4
| con_number = 4
| first_terms = 7, 127, 2147483647
| largest_known_term = 170141183460469231731687303715884105727
| OEIS = A077586
| OEIS_name = a(n) = 2^(2^prime(n) − 1) − 1
}}
A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number Mp can be prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number can be prime only if Mp is itself a Mersenne prime. For the first values of p for which Mp is prime, is known to be prime for p = 2, 3, 5, 7 while explicit factors of have been found for p = 13, 17, 19, and mersenne prime 31.
class="wikitable" | |||
factorization of | |||
---|---|---|---|
2 | 3 | prime | 7 |
3 | 7 | prime (triple) | 127 |
5 | 31 | prime | 2147483647 |
7 | 127 | prime (quadruple) | 170141183460469231731687303715884105727 |
11 | not prime | not prime | 47 × 131009 × 178481 × 724639 × 2529391927 × 70676429054711 × 618970019642690137449562111 × ... |
13 | 8191 | not prime | 338193759479 × 210206826754181103207028761697008013415622289 × ... |
17 | 131071 | not prime | 231733529 × 64296354767 × ... |
19 | 524287 | not prime | 62914441 × 5746991873407 × 2106734551102073202633922471 × 824271579602877114508714150039 × 65997004087015989956123720407169 × 4565880376922810768406683467841114102689 × ... |
23 | not prime | not prime | 2351 × 4513 × 13264529 × 285212639 × 76899609737 × ... |
29 | not prime | not prime | 1399 × 2207 × 135607 × 622577 × 16673027617 × 52006801325877583 × 4126110275598714647074087 × ... |
31 | 2147483647 | not prime (triple mersenne number) | 295257526626031 × 87054709261955177 × 242557615644693265201 × 178021379228511215367151 × ... |
37 | not prime | not prime | |
41 | not prime | not prime | |
43 | not prime | not prime | |
47 | not prime | not prime | |
53 | not prime | not prime | |
59 | not prime | not prime | |
61 | 2305843009213693951 | unknown |
Thus, the smallest candidate for the next double Mersenne prime is , or 22305843009213693951 − 1.
Being approximately 1.695{{e|694127911065419641}},
this number is far too large for any currently known primality test. It has no prime factor below 1 × 1036.{{cite web |title=Double Mersenne 61 factoring status |url=http://www.doublemersennes.org/mm61.php |website=www.doublemersennes.org |access-date=31 March 2022}}
There are probably no other double Mersenne primes than the four known.[https://www.ams.org/journals/mcom/1955-09-051/S0025-5718-1955-0071444-6/S0025-5718-1955-0071444-6.pdf I. J. Good. Conjectures concerning the Mersenne numbers. Mathematics of Computation vol. 9 (1955) p. 120-121] [retrieved 2012-10-19]
Smallest prime factor of (where p is the nth prime) are
:7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617, ... (next term is > 1 × 1036) {{OEIS|id=A309130}}
Catalan–Mersenne number conjecture
The recursively defined sequence
:
:
is called the sequence of Catalan–Mersenne numbers.{{MathWorld|urlname=Catalan-MersenneNumber|title=Catalan-Mersenne Number}} The first terms of the sequence {{OEIS|id=A007013}} are:
:
:
:
:
:
:
Catalan discovered this sequence after the discovery of the primality of by Lucas in 1876.{{cite journal|title=Questions proposées |journal=Nouvelle correspondance mathématique |volume=2 |year=1876 |pages=94–96 |url=https://archive.org/stream/nouvellecorresp01mansgoog#page/n353/mode/2up}} (probably collected by the editor). Almost all of the questions are signed by Édouard Lucas as is number 92: {{quote|Prouver que 261 − 1 et 2127 − 1 sont des nombres premiers. (É. L.) (*).}} The footnote (indicated by the star) written by the editor Eugène Catalan, is as follows: {{quote|(*) Si l'on admet ces deux propositions, et si l'on observe que 22 − 1, 23 − 1, 27 − 1 sont aussi des nombres premiers, on a ce théorème empirique: Jusqu'à une certaine limite, si 2n − 1 est un nombre premier p, 2p − 1 est un nombre premier p
If were prime, it would also contradict the New Mersenne conjecture. It is known that is composite, with factor .[http://www.hoegge.dk/mersenne/NMC.html#unknown New Mersenne Conjecture]
In popular culture
In the Futurama movie The Beast with a Billion Backs, the double Mersenne number is briefly seen in "an elementary proof of the Goldbach conjecture". In the movie, this number is known as a "Martian prime".
See also
References
{{Reflist}}
Further reading
- {{Citation |author-link=L. E. Dickson |last=Dickson |first=L. E. |title=History of the Theory of Numbers |orig-year=1919 |publisher=Chelsea Publishing |location=New York |year=1971 }}.
External links
- {{MathWorld|urlname=DoubleMersenneNumber|title=Double Mersenne Number}}
- Tony Forbes, [http://anthony.d.forbes.googlepages.com/mm61.htm A search for a factor of MM61] {{Webarchive|url=https://web.archive.org/web/20090208194031/http://anthony.d.forbes.googlepages.com/mm61.htm |date=2009-02-08 }}.
- [https://web.archive.org/web/20141015012140/http://www.garlic.com/~wedgingt/MMPstats.txt Status of the factorization of double Mersenne numbers]
- [http://www.doublemersennes.org Double Mersennes Prime Search]
- [http://www.mersenneforum.org/forumdisplay.php?f=99 Operazione Doppi Mersennes]
{{Prime number classes|state=collapsed}}
{{Classes of natural numbers}}
{{Mersenne}}
Category:Eponymous numbers in mathematics