Double Mersenne number

{{short description|Number of form 2^(2^p-1)-1 with prime exponent}}

In mathematics, a double Mersenne number is a Mersenne number of the form

:M_{M_p} = 2^{2^p-1}-1

where p is prime.

Examples

The first four terms of the sequence of double Mersenne numbers areChris Caldwell, [http://primes.utm.edu/mersenne/index.html#unknown Mersenne Primes: History, Theorems and Lists] at the Prime Pages. {{OEIS|id=A077586}}:

:M_{M_2} = M_3 = 7

:M_{M_3} = M_7 = 127

:M_{M_5} = M_{31} = 2147483647

:M_{M_7} = M_{127} = 170141183460469231731687303715884105727

Double Mersenne primes

{{Infobox integer sequence

| name = Double Mersenne primes

| terms_number = 4

| con_number = 4

| first_terms = 7, 127, 2147483647

| largest_known_term = 170141183460469231731687303715884105727

| OEIS = A077586

| OEIS_name = a(n) = 2^(2^prime(n) − 1) − 1

}}

A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number Mp can be prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number M_{M_p} can be prime only if Mp is itself a Mersenne prime. For the first values of p for which Mp is prime, M_{M_{p}} is known to be prime for p = 2, 3, 5, 7 while explicit factors of M_{M_{p}} have been found for p = 13, 17, 19, and mersenne prime 31.

class="wikitable"
pM_{p} = 2^p-1M_{M_{p}} = 2^{2^p-1}-1factorization of M_{M_{p}}
23prime7
37prime (triple)127
531prime2147483647
7127prime (quadruple)170141183460469231731687303715884105727
11not primenot prime47 × 131009 × 178481 × 724639 × 2529391927 × 70676429054711 × 618970019642690137449562111 × ...
138191not prime338193759479 × 210206826754181103207028761697008013415622289 × ...
17131071not prime231733529 × 64296354767 × ...
19524287not prime62914441 × 5746991873407 × 2106734551102073202633922471 × 824271579602877114508714150039 × 65997004087015989956123720407169 × 4565880376922810768406683467841114102689 × ...
23not primenot prime2351 × 4513 × 13264529 × 285212639 × 76899609737 × ...
29not primenot prime1399 × 2207 × 135607 × 622577 × 16673027617 × 52006801325877583 × 4126110275598714647074087 × ...
312147483647not prime (triple mersenne number)295257526626031 × 87054709261955177 × 242557615644693265201 × 178021379228511215367151 × ...
37not primenot prime
41not primenot prime
43not primenot prime
47not primenot prime
53not primenot prime
59not primenot prime
612305843009213693951unknown

Thus, the smallest candidate for the next double Mersenne prime is M_{M_{61}}, or 22305843009213693951 − 1.

Being approximately 1.695{{e|694127911065419641}},

this number is far too large for any currently known primality test. It has no prime factor below 1 × 1036.{{cite web |title=Double Mersenne 61 factoring status |url=http://www.doublemersennes.org/mm61.php |website=www.doublemersennes.org |access-date=31 March 2022}}

There are probably no other double Mersenne primes than the four known.[https://www.ams.org/journals/mcom/1955-09-051/S0025-5718-1955-0071444-6/S0025-5718-1955-0071444-6.pdf I. J. Good. Conjectures concerning the Mersenne numbers. Mathematics of Computation vol. 9 (1955) p. 120-121] [retrieved 2012-10-19]

Smallest prime factor of M_{M_{p}} (where p is the nth prime) are

:7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617, ... (next term is > 1 × 1036) {{OEIS|id=A309130}}

Catalan–Mersenne number conjecture

The recursively defined sequence

: c_0 = 2

: c_{n+1} = 2^{c_n}-1 = M_{c_n}

is called the sequence of Catalan–Mersenne numbers.{{MathWorld|urlname=Catalan-MersenneNumber|title=Catalan-Mersenne Number}} The first terms of the sequence {{OEIS|id=A007013}} are:

:c_0 = 2

:c_1 = 2^2-1 = 3

:c_2 = 2^3-1 = 7

:c_3 = 2^7-1 = 127

:c_4 = 2^{127}-1 = 170141183460469231731687303715884105727

:c_5 = 2^{170141183460469231731687303715884105727}-1 \approx 5.45431 \times 10^{51217599719369681875006054625051616349} \approx 10^{10^{37.70942}}

Catalan discovered this sequence after the discovery of the primality of M_{127}=c_4 by Lucas in 1876.{{cite journal|title=Questions proposées |journal=Nouvelle correspondance mathématique |volume=2 |year=1876 |pages=94–96 |url=https://archive.org/stream/nouvellecorresp01mansgoog#page/n353/mode/2up}} (probably collected by the editor). Almost all of the questions are signed by Édouard Lucas as is number 92: {{quote|Prouver que 261 − 1 et 2127 − 1 sont des nombres premiers. (É. L.) (*).}} The footnote (indicated by the star) written by the editor Eugène Catalan, is as follows: {{quote|(*) Si l'on admet ces deux propositions, et si l'on observe que 22 − 1, 23 − 1, 27 − 1 sont aussi des nombres premiers, on a ce théorème empirique: Jusqu'à une certaine limite, si 2n − 1 est un nombre premier p, 2p − 1 est un nombre premier p', 2p' − 1 est un nombre premier p", etc. Cette proposition a quelque analogie avec le théorème suivant, énoncé par Fermat, et dont Euler a montré l'inexactitude: Si n est une puissance de 2, 2n + 1 est un nombre premier. (E. C.)}}L. E. Dickson, [https://archive.org/details/historyoftheoryo01dick/ History of the theory of numbers. Volume 1: Divisibility and primality] (1919). Published by Washington, Carnegie Institution of Washington.p. 22 Catalan conjectured that they are prime "up to a certain limit". Although the first five terms are prime, no known methods can prove that any further terms are prime (in any reasonable time) simply because they are too huge. However, if c_5 is not prime, there is a chance to discover this by computing c_5 modulo some small prime p (using recursive modular exponentiation). If the resulting residue is zero, p represents a factor of c_5 and thus would disprove its primality. Since c_5 is a Mersenne number, such a prime factor p would have to be of the form 2kc_4 +1. Additionally, because 2^n-1 is composite when n is composite, the discovery of a composite term in the sequence would preclude the possibility of any further primes in the sequence.

If c_5 were prime, it would also contradict the New Mersenne conjecture. It is known that \frac{2^{c_4} + 1}{3} is composite, with factor 886407410000361345663448535540258622490179142922169401 = 5209834514912200c_4 + 1.[http://www.hoegge.dk/mersenne/NMC.html#unknown New Mersenne Conjecture]

See also

References

{{Reflist}}

Further reading

  • {{Citation |author-link=L. E. Dickson |last=Dickson |first=L. E. |title=History of the Theory of Numbers |orig-year=1919 |publisher=Chelsea Publishing |location=New York |year=1971 }}.