Double layer potential

In potential theory, an area of mathematics, a double layer potential is a solution of Laplace's equation corresponding to the electrostatic or magnetic potential associated to a dipole distribution on a closed surface S in three-dimensions. Thus a double layer potential {{math|u(x)}} is a scalar-valued function of {{math|xR3}} given by

u(\mathbf{x}) = \frac {-1} {4\pi} \int_S \rho(\mathbf{y}) \frac{\partial}{\partial\nu} \frac{1}

\mathbf{x}-\mathbf{y}
\, d\sigma(\mathbf{y})

where ρ denotes the dipole distribution, /∂ν denotes the directional derivative in the direction of the outward unit normal in the y variable, and dσ is the surface measure on S.

More generally, a double layer potential is associated to a hypersurface S in n-dimensional Euclidean space by means of

u(\mathbf{x}) = \int_S \rho(\mathbf{y})\frac{\partial}{\partial\nu} P(\mathbf{x}-\mathbf{y})\,d\sigma(\mathbf{y})

where P(y) is the Newtonian kernel in n dimensions.

See also

References

  • {{citation|first1=Richard|last1=Courant|authorlink1=Richard Courant|first2=David|last2=Hilbert|authorlink2=David Hilbert|title=Methods of Mathematical Physics, Volume II|publisher=Wiley-Interscience|year=1962}}.
  • {{Citation | last1=Kellogg | first1=O. D. | title=Foundations of potential theory | publisher=Dover Publications | location=New York | isbn=978-0-486-60144-1 | year=1953}}.
  • {{springer|id=d/d033880|title=Double-layer potential|first=I.A.|last=Shishmarev}}.
  • {{springer|id=m/m065210|title=Multi-pole potential|first=E.D.|last=Solomentsev}}.

Category:Potential theory