Draft:Bali Pulendran

{{AFC submission|||u=Immuno-guru|ns=2|ts=20250220224153}}

{{AFC comment|1=Passes WP:PROF; needs some cleanup. PK650 (talk) 05:31, 28 March 2025 (UTC)}}

----

{{Short description|American and Australian Immunologist Bali Pulendran}}

{{Draft topics|medicine-and-health}}

{{AfC topic|blp}}

= Bali Pulendran =

{{Infobox scientist

| name = Bali Pulendran

| image =

| fields = Vaccines, immunology

| workplaces = Stanford University, Emory University, Emory Vaccine Center, [Baylor Institute for Immunology Research, Immunex Corporation

| alma_mater = BA (Hon), Cambridge University, Natural Sciences; PhD, The Walter & Eliza Hall Institute, University of Melbourne, Australia, Immunology

| doctoral_advisor = Sir Gustav Nossal

| awards = AAI-Ralph Steinman Award for Human Immunology; ViE Award for the Best Research Team at the World Vaccine Congress; MERIT AWARD, NIAID, National Institutes of Health; Millipub Club Award, Emory University; MERIT AWARD, NIDDK National Institutes of Health; Albert E. Levy Award; Paper of the Year Award, International Society for Vaccines; Thomson Reuters (Clarivate) list of Highly Cited Researchers, from 2014 - till present (ranked amongst top 1% of researchers most cited for their subject during the past decade)

| website = https://med.stanford.edu/pulendranlab

}}

Bali Pulendran (born in Sri Lanka in 1966) is an American and Australian immunologist. He is the Violetta L. Horton Professor at the Stanford University School of Medicine, and Director of the [https://iti.stanford.edu/ Institute for Immunity, Transplantation, and Infection] at Stanford University. He is a professor in the Department of Pathology, Department of Microbiology and Immunology, and Fellow at [https://chemh.stanford.edu/ ChEM-H] (Chemistry, Engineering and Medicine for Human Health) at Stanford University School of Medicine, Stanford University.

Education

Pulendran received his undergraduate degree from Cambridge University, and his PhD from the Walter & Eliza Hall Institute in Melbourne, Australia, under the supervision of Sir Gustav Nossal. He then did his post-doctoral work at Immunex Corporation in Seattle, Washington.

Career

After serving as a postdoctoral scholar at Immunex Corporation, Pulendran held assistant an associate professorships at the Baylor Institute for Immunology Research in Dallas, Texas and joined Emory University’s faculty as an associate professor in 2002, at the Emory Vaccine Center. Promoted to full professor in 2004, he became director of Emory's innate immunity program in 2008, receiving the Charles Howard Candler chaired professorship that same year. He came to Stanford University as Violetta L. Horton professor in 2017. He was appointed director of Stanford Medicine's Institute for Immunity, Transplantation and Infection in 2024.

Research

Pulendran’s research has helped define major paradigms in vaccinology and immunology.

Systems biological assessment of human immunity to vaccination and infection

Dr. Pulendran pioneered the field of systems vaccinology to use systems biological approaches to probe immunity to vaccination and infection in humans.{{Cite journal |vauthors=Pulendran B, Li S, Nakaya HI |date=2010-10-29 |title=Systems Vaccinology |journal=Immunity |language=en |volume=33 |issue=4 |pages=516–529 |doi=10.1016/j.immuni.2010.10.006 |pmc=3001343 |pmid=21029962}}. In a study published in 2008{{Cite journal |vauthors=Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, Kennedy K, Wu H, Bennouna S, Oluoch H, Miller J, Vencio RZ, Mulligan M, Aderem A, Ahmed R, Pulendran B |date=January 2009 |title=Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans |journal=Nature Immunology |language=en |volume=10 |issue=1 |pages=116–125 |doi=10.1038/ni.1688 |issn=1529-2908 |pmc=4049462 |pmid=19029902}}, Dr. Pulendran and team used systems biological approaches to predict the immune response to the yellow fever vaccine, one of the most successful vaccines ever developed.  Using transcriptional profiling and machine learning, they identified early blood signatures that accurately predicted subsequent T-cell and antibody responses. This study provided proof of concept of the application of systems biological approaches to predicting vaccine responses and offered key mechanistic insights into vaccine immunity. Subsequently, he and several other groups have extended this systems vaccinology approach to studying immune responses to other vaccines such as those against COVID-19{{Cite journal |vauthors=Arunachalam PS, Scott M, Hagan T, Li C, Feng Y, Wimmers F, Grigoryan L, Trisal M, Edara VV, Lai L, Chang SE, Feng A, Dhingra S, Shah M, Lee AS, Chinthrajah S, Sindher SB, Mallajosyula V, Gao F, Sigal N, Kowli S, Gupta S, Pellegrini K, Tharp G, Maysel-Auslender S, Hamilton S, Aoued H, Hrusovsky K, Roskey M, Bosinger SE, Maecker HT, Boyd SD, Davis MM, Utz PJ, Suthar MS, Khatri P, Nadeau KC, Pulendran B |date=19 August 2021 |title=Systems vaccinology of the BNT162b2 mRNA vaccine in humans |journal=Nature |language=en |volume=596 |issue=7872 |pages=410–416 |doi=10.1038/s41586-021-03791-x |issn=0028-0836 |pmc=8761119 |pmid=34252919|bibcode=2021Natur.596..410A }}{{Cite journal |vauthors=Li C, Lee A, Grigoryan L, Arunachalam PS, Scott M, Trisal M, Wimmers F, Sanyal M, Weidenbacher PA, Feng Y, Adamska JZ, Valore E, Wang Y, Verma R, Reis N, Dunham D, O'Hara R, Park H, Luo W, Gitlin AD, Kim P, Khatri P, Nadeau KC, Pulendran B |date=April 2022 |title=Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine |journal=Nature Immunology |language=en |volume=23 |issue=4 |pages=543–555 |doi=10.1038/s41590-022-01163-9 |issn=1529-2908 |pmc=8989677 |pmid=35288714}}, influenza{{Cite journal |vauthors=Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, Means AR, Kasturi SP, Khan N, Li GM, McCausland M, Kanchan V, Kokko KE, Li S, Elbein R, Mehta AK, Aderem A, Subbarao K, Ahmed R, Pulendran B |date=August 2011 |title=Systems biology of vaccination for seasonal influenza in humans |journal=Nature Immunology |language=en |volume=12 |issue=8 |pages=786–795 |doi=10.1038/ni.2067 |issn=1529-2908 |pmc=3140559 |pmid=21743478}}{{Cite journal |vauthors=Nakaya HI, Hagan T, Duraisingham SS, Lee EK, Kwissa M, Rouphael N, Frasca D, Gersten M, Mehta AK, Gaujoux R, Li GM, Gupta S, Ahmed R, Mulligan MJ, Shen-Orr S, Blomberg BB, Subramaniam S, Pulendran B |date=December 2015 |title=Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures |journal=Immunity |language=en |volume=43 |issue=6 |pages=1186–1198 |doi=10.1016/j.immuni.2015.11.012 |pmc=4859820 |pmid=26682988}}{{Cite journal |vauthors=Wimmers F, Donato M, Kuo A, Ashuach T, Gupta S, Li C, Dvorak M, Foecke MH, Chang SE, Hagan T, De Jong SE, Maecker HT, van der Most R, Cheung P, Cortese M, Bosinger SE, Davis M, Rouphael N, Subramaniam S, Yosef N, Utz PJ, Khatri P, Pulendran B |date=July 2021 |title=The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination |journal=Cell |language=en |volume=184 |issue=15 |pages=3915–3935.e21 |doi=10.1016/j.cell.2021.05.039 |pmc=8316438 |pmid=34174187}}, shingles{{Cite journal |vauthors=Li S, Sullivan NL, Rouphael N, Yu T, Banton S, Maddur MS, McCausland M, Chiu C, Canniff J, Dubey S, Liu K, Tran V, Hagan T, Duraisingham S, Wieland A, Mehta AK, Whitaker JA, Subramaniam S, Jones DP, Sette A, Vora K, Weinberg A, Mulligan MJ, Nakaya HI, Levin M, Ahmed R, Pulendran B |date=May 2017 |title=Metabolic Phenotypes of Response to Vaccination in Humans |journal=Cell |language=en |volume=169 |issue=5 |pages=862–877.e17 |doi=10.1016/j.cell.2017.04.026 |pmc=5711477 |pmid=28502771}}. During the COVID pandemic, his group was amongst the first to apply systems biological approaches to analyzing the human immune responses to SARS-CoV-2{{Cite journal |vauthors=Arunachalam PS, Wimmers F, Mok C, Perera R, Scott M, Hagan T, Sigal N, Feng Y, Bristow L, Tak-Yin Tsang O, Wagh D, Coller J, Pellegrini KL, Kazmin D, Alaaeddine G, Leung WS, Chan J, Chik T, Choi C, Huerta C, Paine McCullough M, Lv H, Anderson E, Edupuganti S, Upadhyay AA, Bosinger SE, Maecker HT, Khatri P, Rouphael N, Peiris M, Pulendran B |date=4 September 2020 |title=Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans |journal=Science |language=en |volume=369 |issue=6508 |pages=1210–1220 |doi=10.1126/science.abc6261 |issn=0036-8075 |pmc=7665312 |pmid=32788292|bibcode=2020Sci...369.1210A }}{{Cite journal |vauthors=Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff LE, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Nguyen TT, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B |date=October 2023 |title=Multi-omics analysis of mucosal and systemic immunity to SARS-CoV-2 after birth |journal=Cell |language=en |volume=186 |issue=21 |pages=4632–4651.e23 |doi=10.1016/j.cell.2023.08.044 |pmc=10724861 |pmid=37776858}}. They have further developed analytical tools such as blood transcriptional modules (BTMs){{Cite journal |vauthors=Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, Schmidt DS, Johnson SE, Milton A, Rajam G, Kasturi S, Carlone GM, Quinn C, Chaussabel D, Palucka AK, Mulligan MJ, Ahmed R, Stephens DS, Nakaya HI, Pulendran B |date=February 2014 |title=Molecular signatures of antibody responses derived from a systems biology study of five human vaccines |journal=Nature Immunology |language=en |volume=15 |issue=2 |pages=195–204 |doi=10.1038/ni.2789 |issn=1529-2908 |pmc=3946932 |pmid=24336226}} and multiscale multiresponse networks (MMRNs) to analyze multi-omics data.

This research has revealed fundamental insights into mechanisms of immune regulation, such as the role of the microbiome on vaccine immunity in humans{{Cite journal |vauthors=Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, Das J, Wang H, Guthmiller J, Zheng NY, Huang M, Uphadhyay AA, Gardinassi L, Petitdemange C, McCullough MP, Johnson SJ, Gill K, Cervasi B, Zou J, Bretin A, Hahn M, Gewirtz AT, Bosinger SE, Wilson PC, Li S, Alter G, Khurana S, Golding H, Pulendran B |date=September 2019 |title=Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans |journal=Cell |language=en |volume=178 |issue=6 |pages=1313–1328.e13 |doi=10.1016/j.cell.2019.08.010 |pmc=6750738 |pmid=31491384}}{{Cite journal |vauthors=Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, Hakimpour P, Gill KP, Nakaya HI, Yarovinsky F, Sartor RB, Gewirtz AT, Pulendran B |date=September 2014 |title=TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination |journal=Immunity |language=en |volume=41 |issue=3 |pages=478–492 |doi=10.1016/j.immuni.2014.08.009 |pmc=4169736 |pmid=25220212}}, and the role of cholesterol metabolism in the antibody response to vaccination{{Cite journal |vauthors=Luo W, Adamska JZ, Li C, Verma R, Liu Q, Hagan T, Wimmers F, Gupta S, Feng Y, Jiang W, Zhou J, Valore E, Wang Y, Trisal M, Subramaniam S, Osborne TF, Pulendran B |date=February 2023 |title=SREBP signaling is essential for effective B cell responses |journal=Nature Immunology |language=en |volume=24 |issue=2 |pages=337–348 |doi=10.1038/s41590-022-01376-y |issn=1529-2908 |pmc=10928801 |pmid=36577930}}. In recent studies, Dr. Pulendran and colleagues used a systems vaccinology approach to define a universal predictor of antibody responses to vaccination{{Cite journal |vauthors=Hagan T, Gerritsen B, Tomalin LE, Fourati S, Mulè MP, Chawla DG, Rychkov D, Henrich E, Miller H, Diray-Arce J, Dunn P, Lee A, HIPC, Levy O, Gottardo R, Sarwal MM, Tsang JS, Suárez-Fariñas M, Sékaly RP, Kleinstein SH, Pulendran B |date=December 2022 |title=Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses |journal=Nature Immunology |language=en |volume=23 |issue=12 |pages=1788–1798 |doi=10.1038/s41590-022-01328-6 |issn=1529-2908 |pmc=9869360 |pmid=36316475}}, and discovered a molecular signature that predicts the durability of antibody responses to multiple vaccines in humans, along with the underlying immunological mechanisms{{Cite journal |vauthors=Cortese M, Hagan T, Rouphael N, Wu SY, Xie X, Kazmin D, Wimmers F, Gupta S, van der Most R, Coccia M, Aranuchalam PS, Nakaya HI, Wang Y, Coyle E, Horiuchi S, Wu H, Bower M, Mehta A, Gunthel C, Bosinger SE, Kotliarov Y, Cheung F, Schwartzberg PL, Germain RN, Tsang J, Li S, Albrecht R, Ueno H, Subramaniam S, Mulligan MJ, Khurana S, Golding H, Pulendran B |date=January 2025 |title=System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans |url=https://www.nature.com/articles/s41590-024-02036-z |journal=Nature Immunology |language=en |volume=26 |issue=1 |pages=116–130 |doi=10.1038/s41590-024-02036-z |issn=1529-2908 |pmid=39747435}}.

The science and medicine of vaccine adjuvants

Dr. Pulendran’s group has also made major contributions to understanding the mechanism of action of vaccine adjuvants and designing novel adjuvants. They have revealed new mechanisms by which vaccine adjuvants induce durable{{Cite journal |vauthors=Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, Villinger F, Murthy N, Steel J, Jacob J, Hogan RJ, García-Sastre A, Compans R, Pulendran B |date=February 2011 |title=Programming the magnitude and persistence of antibody responses with innate immunity |journal=Nature |language=en |volume=470 |issue=7335 |pages=543–547 |doi=10.1038/nature09737 |issn=0028-0836 |pmc=3057367 |pmid=21350488|bibcode=2011Natur.470..543K }}{{Cite journal |vauthors=Kasturi SP, Rasheed M, Havenar-Daughton C, Pham M, Legere T, Sher ZJ, Kovalenkov Y, Gumber S, Huang JY, Gottardo R, Fulp W, Sato A, Sawant S, Stanfield-Oakley S, Yates N, LaBranche C, Alam SM, Tomaras G, Ferrari G, Montefiori D, Wrammert J, Villinger F, Tomai M, Vasilakos J, Fox CB, Reed SG, Haynes BF, Crotty S, Ahmed R, Pulendran B |date=26 June 2020 |title=3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope–specific plasma cells and humoral immunity in nonhuman primates |journal=Science Immunology |language=en |volume=5 |issue=48 |doi=10.1126/sciimmunol.abb1025 |issn=2470-9468 |pmc=8109745 |pmid=32561559}} and broad{{Cite journal |vauthors=Grigoryan L, Feng Y, Bellusci L, Lai L, Wali B, Ellis M, Yuan M, Arunachalam PS, Hu M, Kowli S, Gupta S, Maysel-Auslender S, Maecker HT, Samaha H, Rouphael N, Wilson IA, Moreno AC, Suthar MS, Khurana S, Pillet S, Charland N, Ward BJ, Pulendran B |date=2024-04-05 |title=AS03 adjuvant enhances the magnitude, persistence, and clonal breadth of memory B cell responses to a plant-based COVID-19 vaccine in humans |journal=Science Immunology |language=en |volume=9 |issue=94 |pages=eadi8039 |doi=10.1126/sciimmunol.adi8039 |issn=2470-9468 |pmc=11732256 |pmid=38579013}} antibody responses. This work has revealed the capacity of a TLR7/8 ligand (3M-052) to stimulate remarkably durable antibody responses and bone marrow plasma cells, leading to its evaluation in the clinic. Furthermore, their work has revealed new mechanisms by which adjuvants induce broad antiviral defense by epigenetic imprinting of innate immunity in myeloid cells.

Synergy between innate and adaptive immunity in protection against pathogens

In addition, Dr. Pulendran’s study in nonhuman primates demonstrating synergy between the cellular, humoral, and innate responses in mediating protection against HIV has invigorated the field to develop vaccines that mobilize the synergistic interactions between the innate and adaptive immune systems[{{Cite journal |vauthors=Arunachalam PS, Charles TP, Joag V, Bollimpelli VS, Scott M, Wimmers F, Burton SL, Labranche CC, Petitdemange C, Gangadhara S, Styles TM, Quarnstrom CF, Walter KA, Ketas TJ, Legere T, Jagadeesh Reddy PB, Kasturi SP, Tsai A, Yeung BZ, Gupta S, Tomai M, Vasilakos J, Shaw GM, Kang CY, Moore JP, Subramaniam S, Khatri P, Montefiori D, Kozlowski PA, Derdeyn CA, Hunter E, Masopust D, Amara RR, Pulendran B |date=11 May 2020 |title=T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers |journal=Nature Medicine |language=en |volume=26 |issue=6 |pages=932–940 |doi=10.1038/s41591-020-0858-8 |issn=1078-8956 |pmc=7303014 |pmid=32393800}}. More recently, he has developed this idea further to introduce the concept of ‘integrated organ immunity’{{Cite journal |last=Pulendran |first=B |date=11 January 2024 |title=Integrated organ immunity: a path to a universal vaccine |journal=Nature Reviews Immunology |language=en |volume=24 |issue=2 |pages=81–82 |doi=10.1038/s41577-024-00990-1 |issn=1474-1733 |pmc=11706691 |pmid=38212452}}{{Cite journal |vauthors=Lee A, Floyd K, Wu S, Fang Z, Tan TK, Froggatt HM, Powers JM, Leist SR, Gully KL, Hubbard ML, Li C, Hui H, Scoville D, Ruggiero AD, Liang Y, Pavenko A, Lujan V, Baric RS, Nolan GP, Arunachalam PS, Suthar MS, Pulendran B |date=January 2024 |title=BCG vaccination stimulates integrated organ immunity by feedback of the adaptive immune response to imprint prolonged innate antiviral resistance |journal=Nature Immunology |language=en |volume=25 |issue=1 |pages=41–53 |doi=10.1038/s41590-023-01700-0 |issn=1529-2908 |pmc=10932731 |pmid=38036767}} to explain how the innate and adaptive immune systems and non-haematopoietic cells can interact in tissues to generate protective immunity against diverse pathogens in an antigen-agnostic manner. Considering immune responses through this framework could enable the design of a new class of vaccines termed ‘universal vaccines’ that are not pathogen specific.

Dendritic Cell Biology

Earlier in his career, Dr. Pulendran discovered that dendritic cells (DCs), one of the key cell types orchestrating the immune response, consist of multiple subtypes, which are functionally distinct in their capacity to modulate T-helper 1/T-helper 2 responses in vivo{{Cite journal |vauthors=Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR |date=2 February 1999 |title=Distinct dendritic cell subsets differentially regulate the class of immune response in vivo |journal=Proceedings of the National Academy of Sciences |language=en |volume=96 |issue=3 |pages=1036–1041 |doi=10.1073/pnas.96.3.1036 |doi-access=free |issn=0027-8424 |pmc=15346 |pmid=9927689|bibcode=1999PNAS...96.1036P }}{{Cite journal |last=Pulendran |first=B |date=21 March 2015 |title=The Varieties of Immunological Experience: Of Pathogens, Stress, and Dendritic Cells |url=https://www.annualreviews.org/content/journals/10.1146/annurev-immunol-020711-075049 |journal=Annual Review of Immunology |language=en |volume=33 |issue=1 |pages=563–606 |doi=10.1146/annurev-immunol-020711-075049 |pmid=25665078 |issn=0732-0582}}. This was the first evidence for functional specialization of DC subsets in vivo. He also discovered the mechanisms by which microbial stimuli program DCs to modulate T-helper responses{{Cite journal |vauthors=Pulendran B, Lingappa J, Kennedy MK, Smith J, Teepe M, Rudensky A, Maliszewski CR, Maraskovsky E |date=1997-09-01 |title=Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice |url=https://pubmed.ncbi.nlm.nih.gov/9278310/ |journal=Journal of Immunology (Baltimore, Md.: 1950) |volume=159 |issue=5 |pages=2222–2231 |doi=10.4049/jimmunol.159.5.2222 |issn=0022-1767 |pmid=9278310}}{{Cite journal |vauthors=Pulendran B, Palucka K, Banchereau J |date=13 July 2001 |title=Sensing Pathogens and Tuning Immune Responses |url=https://www.science.org/doi/10.1126/science.1062060 |journal=Science |language=en |volume=293 |issue=5528 |pages=253–256 |doi=10.1126/science.1062060 |pmid=11452116 |issn=0036-8075}}{{Cite journal |vauthors=Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J |date=1 November 2001 |title=Lipopolysaccharides from Distinct Pathogens Induce Different Classes of Immune Responses In Vivo |url=https://journals.aai.org/jimmunol/article/167/9/5067/42751/Lipopolysaccharides-from-Distinct-Pathogens-Induce |journal=The Journal of Immunology |language=en |volume=167 |issue=9 |pages=5067–5076 |doi=10.4049/jimmunol.167.9.5067 |issn=0022-1767 |pmc=3739327 |pmid=11673516}}{{Cite journal |vauthors=Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis, J, Van Dyke T, Pulendran B |date=15 November 2003 |title=Cutting Edge: Different Toll-Like Receptor Agonists Instruct Dendritic Cells to Induce Distinct Th Responses via Differential Modulation of Extracellular Signal-Regulated Kinase-Mitogen-Activated Protein Kinase and c-Fos |url=https://journals.aai.org/jimmunol/article/171/10/4984/1823/Cutting-Edge-Different-Toll-Like-Receptor-Agonists |journal=The Journal of Immunology |language=en |volume=171 |issue=10 |pages=4984–4989 |doi=10.4049/jimmunol.171.10.4984 |issn=0022-1767 |pmid=14607893}}{{Cite journal |vauthors=Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B |date=October 2008 |title=Toll-like receptor–mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway |journal=Nature Immunology |language=en |volume=9 |issue=10 |pages=1157–1164 |doi=10.1038/ni.1645 |issn=1529-2908 |pmc=3732485 |pmid=18758466}}{{Cite journal |vauthors=Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B |date=July 2010 |title=The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling |journal=Nature Immunology |language=en |volume=11 |issue=7 |pages=608–617 |doi=10.1038/ni.1883 |issn=1529-2908 |pmc=3145206 |pmid=20495560}}{{Cite journal |vauthors=Pulendran B, Artis D |date=27 July 2012 |title=New Paradigms in Type 2 Immunity |journal=Science |language=en |volume=337 |issue=6093 |pages=431–435 |doi=10.1126/science.1221064 |issn=0036-8075 |pmc=4078898 |pmid=22837519|bibcode=2012Sci...337..431P }}, and helped establish Flt3-Ligand as the key growth factor for DCs in vivo in mice and in humans{{Cite journal |vauthors=Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C, Davoust J, Fay J, Palucka K |date=1 July 2000 |title=Flt3-Ligand and Granulocyte Colony-Stimulating Factor Mobilize Distinct Human Dendritic Cell Subsets In Vivo |url=https://journals.aai.org/jimmunol/article/165/1/566/33402/Flt3-Ligand-and-Granulocyte-Colony-Stimulating |journal=The Journal of Immunology |language=en |volume=165 |issue=1 |pages=566–572 |doi=10.4049/jimmunol.165.1.566 |issn=0022-1767 |pmid=10861097}}. He further elucidated the molecular mechanisms by which DCs mediate immunological tolerance{{Cite journal |vauthors=Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B |date=October 2007 |title=Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17–producing T cell responses |url=https://www.nature.com/articles/ni1511 |journal=Nature Immunology |language=en |volume=8 |issue=10 |pages=1086–1094 |doi=10.1038/ni1511 |issn=1529-2908 |pmid=17873879}}{{Cite journal |vauthors=Manicassamy S, Ravindran R, Deng J, Oluoch H, Denning TL, Kasturi SP, Rosenthal KM, Evavold BD, Pulendran B |date=April 2009 |title=Toll-like receptor 2–dependent induction of vitamin A–metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity |journal=Nature Medicine |language=en |volume=15 |issue=4 |pages=401–409 |doi=10.1038/nm.1925 |issn=1078-8956 |pmc=2768543 |pmid=19252500}}{{Cite journal |vauthors=Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang YC, Pulendran B |date=13 August 2010 |title=Activation of β-Catenin in Dendritic Cells Regulates Immunity Versus Tolerance in the Intestine |journal=Science |language=en |volume=329 |issue=5993 |pages=849–853 |doi=10.1126/science.1188510 |issn=0036-8075 |pmc=3732486 |pmid=20705860|bibcode=2010Sci...329..849M }}, and how metabolic sensors such as GCN2 and mTOR regulate DC function and innate immunity{{Cite journal |vauthors=Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J, Maddur MS, Park Y, Jones DP, Chappert P, Davoust J, Weiss DS, Virgin HW, Ron D, Pulendran B |date=17 January 2014 |title=Vaccine Activation of the Nutrient Sensor GCN2 in Dendritic Cells Enhances Antigen Presentation |journal=Science |language=en |volume=343 |issue=6168 |pages=313–317 |doi=10.1126/science.1246829 |issn=0036-8075 |pmc=4048998 |pmid=24310610|bibcode=2014Sci...343..313R }}{{Cite journal |vauthors=Ravindran R, Loebbermann J, Nakaya HI, Khan N, Ma H, Gama L, Machiah DK, Lawson B, Hakimpour P, Wang YC, Li S, Sharma P, Kaufman RJ, Martinez J, Pulendran B |date=24 March 2016 |title=The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation |journal=Nature |language=en |volume=531 |issue=7595 |pages=523–527 |doi=10.1038/nature17186 |issn=0028-0836 |pmc=4854628 |pmid=26982722|bibcode=2016Natur.531..523R }}{{Cite journal |vauthors=Sinclair C, Bommakanti G, Gardinassi L, Loebbermann J, Johnson MJ, Hakimpour P, Hagan T, Benitez L, Todor A, Machiah D, Oriss T, Ray A, Bosinger S, Ravindran R, Li S, Pulendran B |date=8 September 2017 |title=mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation |journal=Science |language=en |volume=357 |issue=6355 |pages=1014–1021 |doi=10.1126/science.aaj2155 |issn=0036-8075 |pmc=5746055 |pmid=28798047|bibcode=2017Sci...357.1014S }}.

Awards and honors

  • 2025 [https://www.aai.org/Awards/Career/AAI-Steinman-Award-for-Human-Immunology-Research#gsc.tab=0 AAI-Ralph Steinman Award in Human Immunology]
  • 2024 V[https://www.terrapinn.com/awards/vaccine-industry-excellence/2024-Winners.stm iE Award for the Best Research Team at the World Vaccine Congress]
  • 2024 Fellow of the American Association for the Advancement of Science{{Cite web |title=Stanford faculty named AAAS Fellows |url=https://news.stanford.edu/stories/2024/04/seven-stanford-faculty-named-aaas-fellows |access-date=2025-02-20 |website=news.stanford.edu |language=en}}{{Cite web |title=2023 AAAS Fellows {{!}} American Association for the Advancement of Science (AAAS) |url=https://www.aaas.org/fellows/2023-fellows |access-date=2025-02-20 |website=www.aaas.org |language=en}}
  • 2023 Invited Speaker, Nobel Symposium in Physiology or Medicine 2023, organized by Nobel Foundation, the Royal Swedish Academy of Sciences, Karolinska Institute
  • 2020 Fellow of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID){{Cite web |title=ESCMID Fellows |url=https://www.escmid.org/about-us/network/escmid-fellows/#:~:text=The%20title%20of%20ESCMID%20Fellow,noteworthy%20civic%20or%20volunteer%20services |access-date=2025-02-20 |website=www.escmid.org |language=en}}
  • 2017 – present Violetta L. Horton Professorship, Stanford University
  • 2014 – present [https://www.webofscience.com/wos/author/record/JBR-8533-2023 Thomson Reuters] (Clarivate) list of Highly Cited Researchers, 2014{{Cite web |title=Web of Science |url=https://www.webofscience.com/wos/author/record/JBR-8533-2023 |access-date=2025-02-20}} (ranked amongst top 1% of researchers most cited for their subject during the past decade)
  • 2013 – 2023 Scientific Advisory Board Member, Keystone Symposia
  • 2011 – 2021 MERIT AWARD, [https://www.niddk.nih.gov/ NIDDK, National Institutes of Health]
  • 2011 [https://urc.emory.edu/levy-award/index.html Albert E. Levy Award for Excellence in Scientific Research], Emory University
  • 2010 Member of the “[https://www.federalregister.gov/documents/2010/10/29/2010-27317/niaid-blue-ribbon-panel-meeting-on-adjuvant-discovery-and-development Blue Ribbon Panel on Adjuvants],” convened by Dr. Fauci at NIAID, NIH
  • 2010 [https://med.emory.edu/about/facts-and-figures/awards-and-distinctions/recognitions-week/millipub-club.html Millipub Club Award, Emory University]
  • 2009 – 2019 [https://www.niaid.nih.gov/research/merit-awards-extensions#:~:text=Each%20year%2C%20NIAID%20issues%20about,to%20a%20different%20principal%20investigator. MERIT AWARD, NIAID, National Institutes of Health]
  • 2008 – 2011 Member of the AIDS Vaccine Research Subcommittee, NIAID, National Institutes of Health
  • 2008 – 2017 [https://provost.emory.edu/faculty/success-recognition/charles-howard-candler.html Charles Howard Candler Professorship, Emory University]
  • Over 50 keynote lectures, including: Keynote lecture at the 2025 Cold Spring Harbor Symposium on Systems Immunology{{Cite web |title=Systems Immunology 2025 {{!}} CSHL |url=https://meetings.cshl.edu/meetings.aspx?meet=SYSIMM |access-date=2025-02-20 |website=meetings.cshl.edu}}; President’s Symposium at the annual meeting of the American Association of Immunologists (AAI) 2023; Peter Doherty Oration: Asia Pacific Vaccine and Immunotherapy Congress{{Cite web |title=Invited Speakers |url=https://www.apvic.org/invited-speakers |access-date=2025-02-20 |website=APVIC 2025 |language=en-AU}};  Mary Lou Clements-Mann Memorial Lecturer in Vaccine Sciences at the Annual National Foundation for Infectious Diseases meeting{{Cite web |title=Mary Lou Clements-Mann Memorial Lecture in Vaccine Sciences - NFID |url=https://www.nfid.org/education-events/annual-conference-on-vaccinology-research/mary-lou-clements-mann-memorial-lecture-in-vaccine-sciences/ |access-date=2025-02-20 |website=National Foundation for Infectious Diseases |language=en-US}}; Opening Keynote Lecture, 3rd Institut Pasteur International Network Symposium, Paris, France{{Cite web |date=2017-01-04 |title=3rd Institut Pasteur International Network Symposium celebrates Biomarkers |url=https://www.pasteur.fr/en/institut-pasteur/institut-pasteur-world/news/3rd-institut-pasteur-international-network-symposium-celebrates-biomarkers |access-date=2025-02-20 |website=Institut Pasteur |language=en-gb}}; Keynote, Speaker, Annual International Society for Vaccines (ISV) Congress, Quebec City{{Cite web |last=admin |title=2022 Congress |url=https://isv-online.org/congress/recent-congress/2022-congress/ |access-date=2025-02-20 |website=The International Society for Vaccines |language=en}}