Draft:Henning Höppe
{{AFC submission|d|prof|u=Rubicon33|ns=118|decliner=Ldm1954|declinets=20250403175054|ts=20250402092929}}
{{AFC submission|d|prof|u=Rubicon33|ns=118|decliner=Reconrabbit|declinets=20240528164213|small=yes|ts=20240520120639}}
{{AFC comment|1=I do not see any significant improvement since the page was declined a year ago. I counted by hand his Google Scholar h-factor to be less than 30 (he has no profile) which is comparable to his WOS number of 29. Sorry, but that is not high enough as yet. Without significant awards I think you will have to continue to wait. Ldm1954 (talk) 17:50, 3 April 2025 (UTC)}}
{{AFC comment|1=All sources are works that have been produced by Höppe and are not independent of the subject. There are also no sources in the "Life and Research" section to verify the information stated there. Reconrabbit 16:42, 28 May 2024 (UTC)}}
----
{{Short description|German solid-state chemist}}
{{Draft topics|biography|chemistry}}
{{AfC topic|blp}}
{{Infobox scientist
| name = Henning A. Höppe
| image = Henning Höppe 2019.jpg
| image_size =
| alt = Henning Höppe (2019)
| caption = Henning Höppe (2019)
| birth_date = {{Birth date and age|1972|10|7|df=yes}}
| birth_place = Nuremberg, Germany
| nationality = German
| fields = Chemistry, Solid-State Chemistry, Materials Science
| workplaces = University of Augsburg
| alma_mater = University of Bayreuth, Ludwig Maximilian University of Munich
| doctoral_advisor = Wolfgang Schnick
| known_for = Research on luminescent materials and silicate-like compounds
| awards = Liebig Fellowship (2004), Eugen-Graetz Prize (2006)
}}
Henning A. Höppe (born October 7, 1972 in Nuremberg) is a German chemist and professor specializing in Solid-state Chemistry and Materials Science at the University of Augsburg. His research focuses on luminescent materials and silicate-like compounds. On these topics he published more than 120 manuscripts{{Cite web |date=2025-04-02 |title=web of science statistics |url=https://www.webofscience.com/wos/author/record/C-5838-2008 |access-date=2025-04-02 |website=webofscience}}{{Cite web |title=ORCID |url=https://orcid.org/0000-0002-8734-8258 |access-date=2025-04-02 |website=orcid.org}} and a textbook on Rare-earth chemistry.{{Cite book |last=Höppe |first=Henning |url=https://www.degruyter.com/document/doi/10.1515/9783110680829/html |title=Rare-Earth Elements: Solid State Materials: Chemical, Optical and Magnetic Properties |date=2024-03-04 |publisher=De Gruyter |isbn=978-3-11-068082-9 |doi=10.1515/9783110680829}}
Early life and education
Höppe completed his Abitur in 1992 at the Rottmayr-Gymnasium in Laufen, Germany. After completing his military service, he studied chemistry at the University of Bayreuth, graduating in 1998. In 1997, he participated in the ERASMUS program at the University of Bristol's Organic Chemistry Section under Guy C. Lloyd-Jones. He earned his doctorate in 2003 from Ludwig Maximilian University of Munich under supervision of Wolfgang Schnick, with a dissertation on europium-doped nitridosilicates, oxonitridosilicates, and carbidooxonitridosilicates.Henning A. Höppe: Struktur-Eigenschaftsbeziehungen seltenerddotierter Phosphate und Borate. Habilitation Uni Freiburg im Breisgau 2009, S. 203.
Academic career
{{unsourced section}}
From 2003 to 2004, Höppe was a postdoctoral researcher at the University of Oxford in the Inorganic Chemistry Laboratory with Malcolm Green, focusing on carbon nanotubes. He completed his habilitation in Inorganic chemistry from Albert-Ludwigs University Freiburg in 2010, concentrating on structure-property relationships of rare-earth-doped phosphates and borates. In 2010, he was appointed Professor of Solid-state Chemistry and Materials science at the University of Augsburg, Germany.
Research
Höppe's research group investigates novel luminescent materials for optical applications, particularly in phosphor-converted light-emitting diodes (LEDs). They focus on silicate-like compounds, including phosphates,{{Cite journal |last=Höppe |first=Henning A. |date=October 2005 |title=The synthesis, crystal structure and vibrational spectra of α-Sr(PO3)2 containing an unusual catena-polyphosphate helix |url=https://doi.org/10.1016/j.solidstatesciences.2005.06.014 |journal=Solid State Sciences |volume=7 |issue=10 |pages=1209–1215 |doi=10.1016/j.solidstatesciences.2005.06.014 |issn=1293-2558}} borosulfates,{{Cite journal |last1=Bruns |first1=Jörn |last2=Höppe |first2=Henning A. |last3=Daub |first3=Michael |last4=Hillebrecht |first4=Harald |last5=Huppertz |first5=Hubert |date=2020-06-26 |title=Borosulfates—Synthesis and Structural Chemistry of Silicate Analogue Compounds |journal=Chemistry – A European Journal |volume=26 |issue=36 |pages=7966–7980 |doi=10.1002/chem.201905449 |issn=0947-6539 |pmc=7384169 |pmid=31943390}} borophosphates, and fluorooxoborates,{{Cite journal |last1=Jantz |first1=Stephan G. |last2=Dialer |first2=Marwin |last3=Bayarjargal |first3=Lkhamsuren |last4=Winkler |first4=Björn |last5=van Wüllen |first5=Leo |last6=Pielnhofer |first6=Florian |last7=Brgoch |first7=Jakoah |last8=Weihrich |first8=Richard |last9=Höppe |first9=Henning A. |date=September 2018 |title=Sn[B 2 O 3 F 2 ]—The First Tin Fluorooxoborate as Possible NLO Material |url=https://onlinelibrary.wiley.com/doi/10.1002/adom.201800497 |journal=Advanced Optical Materials |volume=6 |issue=17 |doi=10.1002/adom.201800497 |issn=2195-1071}}{{Cite journal |last1=Jantz |first1=Stephan G. |last2=Pielnhofer |first2=Florian |last3=van Wüllen |first3=Leo |last4=Weihrich |first4=Richard |last5=Schäfer |first5=Martin J. |last6=Höppe |first6=Henning A. |date=2018-01-09 |title=The First Alkaline-Earth Fluorooxoborate Ba[B 4 O 6 F 2 ]—Characterisation and Doping with Eu 2+ |url=https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201704324 |journal=Chemistry – A European Journal |volume=24 |issue=2 |pages=443–450 |doi=10.1002/chem.201704324 |issn=0947-6539 |pmid=29105176}} which serve as host structures for activator ions such as rare-earth metals. These compounds are of interest due to their tetrahedral building units and potential nonlinear optical properties.{{Cite web |date=2020-05-06 |title=Patent on non-linear-optical materials |url=https://worldwide.espacenet.com/patent/search?q=pn%3DEP3366642B1 |access-date=2025-04-02 |website=espacenet}}
Within the broad research of silicate-like materials for applications such as phosphors based on rare-earth elements{{Cite journal |last1=Jantz |first1=Stephan G. |last2=Erdmann |first2=Rebekka |last3=Hariyani |first3=Shruti |last4=Brgoch |first4=Jakoah |last5=Höppe |first5=Henning A. |date=2020-10-13 |title=Sr 6 (BO 3 ) 3 BN 2 : An Oxido–Nitrido–Borate Phosphor Featuring BN 2 Dumbbells |url=https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02925 |journal=Chemistry of Materials |volume=32 |issue=19 |pages=8587–8594 |doi=10.1021/acs.chemmater.0c02925 |issn=0897-4756}} or non-linear optical materials the Höppe group discovered the very first crystalline borosulfates in 2012,{{Cite journal |last1=Höppe |first1=Henning A. |last2=Kazmierczak |first2=Karolina |last3=Daub |first3=Michael |last4=Förg |first4=Katharina |last5=Fuchs |first5=Franziska |last6=Hillebrecht |first6=Harald |date=2012-06-18 |title=The First Borosulfate K 5 [B(SO 4 ) 4 ] |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201109237 |journal=Angewandte Chemie International Edition |volume=51 |issue=25 |pages=6255–6257 |doi=10.1002/anie.201109237 |issn=1433-7851 |pmid=22566359}} the first normal-pressure tin borate in 2019,{{Cite journal |last1=Schäfer |first1=Martin J. |last2=Jantz |first2=Stephan G. |last3=Pielnhofer |first3=Florian |last4=Höppe |first4=Henning A. |date=2019-07-16 |title=The very first normal-pressure tin borate Sn3B4O9, and the intermediate Sn2[B7O12]F |url=https://pubs.rsc.org/en/content/articlelanding/2019/dt/c9dt01901d |journal=Dalton Transactions |volume=48 |issue=28 |pages=10398–10402 |doi=10.1039/C9DT01901D |issn=1477-9234 |pmid=31225846}} and several fluorooxoborates – mainly materials with weak or extremely weak coordination of the cations.{{Cite journal |last1=Netzsch |first1=Philip |last2=Hämmer |first2=Matthias |last3=Gross |first3=Peter |last4=Bariss |first4=Harijs |last5=Block |first5=Theresa |last6=Heletta |first6=Lukas |last7=Pöttgen |first7=Rainer |last8=Bruns |first8=Jörn |last9=Huppertz |first9=Hubert |last10=Höppe |first10=Henning A. |date=2019-03-26 |title=RE 2[B2(SO4)6] (RE = Y, La–Nd, Sm, Eu, Tb–Lu): a silicate-analogous host structure with weak coordination behaviour |url=https://pubs.rsc.org/en/content/articlelanding/2019/dt/c9dt00445a |journal=Dalton Transactions |volume=48 |issue=13 |pages=4387–4397 |doi=10.1039/C9DT00445A |pmid=30864591 |issn=1477-9234}} Moreover, basic compounds such as Bismuth(III) sulfate{{Cite journal |last1=Hämmer |first1=Matthias |last2=Brgoch |first2=Jakoah |last3=Netzsch |first3=Philip |last4=Höppe |first4=Henning A. |date=2022-03-07 |title=The Role of the Bi3+ Lone Pair Effect in Bi(H3O)(SO4)2, Bi(HSO4)3, and Bi2(SO4)3 |url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03893 |journal=Inorganic Chemistry |volume=61 |issue=9 |pages=4102–4113 |doi=10.1021/acs.inorgchem.1c03893 |pmid=35192329 |issn=0020-1669}} or the first mixed-valent tin sulfate{{Cite journal |last1=Hämmer |first1=Matthias |last2=Netzsch |first2=Philip |last3=Klenner |first3=Steffen |last4=Neuschulz |first4=Kai |last5=Struckmann |first5=Mona |last6=Wickleder |first6=Mathias S. |last7=Daub |first7=Michael |last8=Hillebrecht |first8=Harald |last9=Pöttgen |first9=Rainer |last10=Höppe |first10=Henning A. |date=2021-09-28 |title=The tin sulfates Sn(SO4)2 and Sn2(SO4)3: crystal structures, optical and thermal properties |url=https://pubs.rsc.org/en/content/articlelanding/2021/dt/d1dt02189c |journal=Dalton Transactions |volume=50 |issue=37 |pages=12913–12922 |doi=10.1039/D1DT02189C |pmid=34581352 |issn=1477-9234}} and europium borate{{Cite journal |last1=Höppe |first1=Henning A. |last2=Kazmierczak |first2=Karolina |last3=Grumbt |first3=Christine |last4=Schindler |first4=Lisa |last5=Schellenberg |first5=Inga |last6=Pöttgen |first6=Rainer |date=2013 |title=The Oxonitridoborate Eu5(BO2.51(7)N0.49(7))4 and the Mixed-Valent Borates Sr3Ln2(BO3)4 (Ln = Ho, Er) |url=https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejic.201300827 |journal=European Journal of Inorganic Chemistry |volume=2013 |issue=31 |pages=5443–5449 |doi=10.1002/ejic.201300827 |issn=1099-0682}} were either discovered or thoroughly investigated by this group. The first published borosulfate rose hope for optical applications,{{Cite web |title=Borosulfate: eine neue Materialklasse mit dem Zeug zum Quecksilberersatz |url=https://www.chemie.de/news/138363/borosulfate-eine-neue-materialklasse-mit-dem-zeug-zum-quecksilberersatz.html |access-date=2025-04-02 |website=www.chemie.de |language=de}} caused other groups to work on this topic{{Cite web |date=2018-07-20 |title=Neue "Enkel" einer prähistorischen Substanz |url=https://www.uibk.ac.at/de/newsroom/2018/neue-enkel-einer-praehistorischen-substanz/ |access-date=2025-04-02 |website=www.uibk.ac.at |language=de}} leading to a promising proton ion conductor{{Cite journal |last1=Ward |first1=Matthew D. |last2=Chaloux |first2=Brian L. |last3=Johannes |first3=Michelle D. |last4=Epshteyn |first4=Albert |date=October 2020 |title=Facile Proton Transport in Ammonium Borosulfate-An Unhumidified Solid Acid Polyelectrolyte for Intermediate Temperatures |url=https://pubmed.ncbi.nlm.nih.gov/32924200 |journal=Advanced Materials (Deerfield Beach, Fla.) |volume=32 |issue=42 |pages=e2003667 |doi=10.1002/adma.202003667 |issn=1521-4095 |pmid=32924200|bibcode=2020AdM....3203667W }} and the hot paper on a highly Lewis and Bronsted acidic magnesium borosulfate hydrate{{Cite journal |last1=Netzsch |first1=Philip |last2=Stroh |first2=Regina |last3=Pielnhofer |first3=Florian |last4=Krossing |first4=Ingo |last5=Höppe |first5=Henning A. |date=2021 |title=Strong Lewis and Brønsted Acidic Sites in the Borosulfate Mg3[H2O→B(SO4)3]2 |journal=Angewandte Chemie International Edition |volume=60 |issue=19 |pages=10643–10646 |doi=10.1002/anie.202016920 |issn=1521-3773 |pmc=8251581 |pmid=33751735}} generated broader interest due to its potential in catalysis.{{Cite web |last=Autorgh |date=2021-04-20 |title=Vereinfachung der Kraftstoffproduktion |url=https://www.solarify.eu/2021/04/20/806-vereinfachung-der-kraftstoffproduktion/ |access-date=2025-04-02 |website=SOLARIFY |language=de}}
Trivia
Henning Höppe also reportedly participated or conducted cooking classes at his university{{Cite web |date=2017-05-22 |title=Kochkurs beim Chemieprofessor |url=https://www.augsburger-allgemeine.de/augsburg/Kochkurs-beim-Chemieprofessor-id41531821.html |access-date=2025-04-02 |website=augsburger-allgemeine |language=de}} and publicly opposed chancellor Olaf Scholz.{{Cite web |last=Peter |first=Tobias |date=2020-08-04 |title=Olaf ante portas: Die SPD und ihr Kanzlerkandidat in spe |url=https://www.rnd.de/politik/olaf-ante-portas-die-spd-und-ihr-kanzlerkandidat-in-spe-OXOQYJJZRZB4VKW3PXFUWVVOKQ.html |access-date=2025-04-02 |website=www.rnd.de |language=de}}
Awards and Honors
- Liebig Fellowship from the Fonds der Chemischen Industrie (FCI), 2004
- Eugen-Graetz Prize from the University of Freiburg, 2006, for work on the solid-state chemistry foundations for developing new luminescent materials.
Selected Publications
- Optical, Magnetic, and Structural Properties of Nitridosilicates, Oxonitridosilicates, and Carbidooxonitridosilicates, Munich, 2003 (Doctoral dissertation)
- Structure-Property Relationships of Rare-Earth-Doped Phosphates and Borates, Freiburg, 2009 (Habilitation thesis)
- Rare-Earth Elements: Solid State Materials: Chemical, Optical and Magnetic Properties, Berlin/Boston, 2024, ISBN 978-3110680812
References
{{reflist}}
External Links
- [https://www.uni-augsburg.de/de/fakultaet/mntf/physik/groups/fkch/prof-dr-henning-hoppe/ Homepage at the University of Augsburg]