Draft:Maximal rank conjecture

{{AFC submission|d|nn|u=Sushidude21!|ns=118|decliner=Ca|declinets=20241201131006|ts=20241123044747}}

{{AFC comment|1=Needs discussion outside Eric Larson's works. Ca talk to me! 13:10, 1 December 2024 (UTC)}}

----

{{Use dmy dates|date=July 2024}}

In algebraic geometry,

Let  C \subset \mathbb{P}^r be a general curve of genus g embedded via a general linear series of degree d. The Maximal Rank Conjecture asserts that the restriction maps H^0(\mathcal{O}_{\mathbb{P}^r}(m)) \to H^0(\mathcal{O}_{\mathbb{C}}(m)) are of maximal rank; this determines the Hilbert function of C.{{Cite journal |last=Larson |first=Eric |date=2020-08-01 |title=The Maximal Rank Conjecture for sections of curves |url=https://www.sciencedirect.com/science/article/pii/S0021869320301186 |journal=Journal of Algebra |volume=555 |pages=223–245 |doi=10.1016/j.jalgebra.2020.03.006 |issn=0021-8693|arxiv=1208.2730 }}

Its first proof was published by Eric Larson on 14 Nov 2017{{Citation |last=Larson|first=Eric |title=The Maximal Rank Conjecture |date=2018-09-18 |arxiv=1711.04906}} whilst a graduate student at MIT.{{Cite web |date=2022-08-25 |title=Old Problem About Algebraic Curves Falls to Young Mathematicians |url=https://www.quantamagazine.org/old-problem-about-algebraic-curves-falls-to-young-mathematicians-20220825/ |access-date=2025-03-07 |website=Quanta Magazine |language=en}}

References

{{Reflist}}

{{Draft categories|

:Category:Conjectures

}}

{{undercategorised|date=July 2024}}

{{Drafts moved from mainspace|date=August 2024}}