Draft:TSH-T3 shunt
{{Draft article}}
{{Short description|Direct TSH-dependent thyroidal pathway for triiodothyronine secretion}}
{{Use dmy dates|date=May 2025}}
{{Infobox medical condition (new)
| name = TSH-T3 shunt
| field = Endocrinology
| synonyms = Thyrotropin-T3 shunt; thyroidal T3 secretion pathway
| image =
| caption = Thyroid follicles where intrathyroidal conversion of T4 → T3 occurs
| complications= Instability of circulating T3 when absent (e.g. athyreosis)
| causes = Physiological response to circulating TSH
| treatment =
}}
TSH-T3 shunt is a feed-forward mechanism of the hypothalamic–pituitary–thyroid axis (HPT axis) in which pituitary thyroid-stimulating hormone (TSH) directly augments secretion of the biologically active thyroid hormone triiodothyronine (T3) by the thyroid gland. Besides stimulating production of the pro-hormone thyroxine (T4), TSH up-regulates intrathyroidal deiodination of T4 to T3 via type II iodothyronine deiodinase (DIO2), effectively “shunting” part of the gland’s T4 output into active T3 before release.{{cite journal |last1=Williams |first1=GR |last2=Bassett |first2=JHD |title=Local control of thyroid hormone action: role of type 2 deiodinase |journal=Journal of Endocrinology |volume=209 |issue=3 |pages=261–272 |year=2011 |doi=10.1530/JOE-11-0153 |doi-broken-date=20 May 2025 |pmid=21464387}}
The pathway buffers circulating free T3 (FT3) against fluctuations in thyroid output and contributes to the circadian rhythm of serum T3.{{cite journal |last1=Fliers |first1=E |last2=Kalsbeek |first2=A |last3=Boelen |first3=A |title=Beyond the fixed set-point of the HPT axis |journal=European Journal of Endocrinology |volume=171 |issue=5 |pages=R197–R208 |year=2014 |doi=10.1530/EJE-14-0285 |pmid=25005935|url=https://pure.knaw.nl/portal/en/publications/63af7e0f-7872-4539-8ef7-663625da772e }} Recognition of a TSH-T3 shunt has refined models of thyroid homeostasis and influences interpretation of thyroid function tests and the management of hypothyroidism.{{cite journal |last1=Hoermann |first1=R |last2=Midgley |first2=JE |last3=Giacobino |first3=A |title=Homeostatic equilibria between free thyroid hormones and pituitary thyrotropin |journal=Hormone and Metabolic Research |volume=47 |issue=9 |pages=674–680 |year=2015 |doi=10.1055/s-0034-1398616 |pmid=25750078}}
Background
In euthyroid adults about 80 % of circulating T3 arises from peripheral deiodination of T4, while ~20 % is secreted directly by the thyroid.{{cite journal |last=Pilo |first=A |title=Thyroidal and peripheral production of 3,5,3′-triiodothyronine in humans |journal=American Journal of Physiology |volume=258 |issue=5 |pages=E715–E726 |year=1990 |doi=10.1152/ajpendo.1990.258.5.E715 |doi-broken-date=20 May 2025 |pmid=2325880}} Under high TSH drive – for example in iodine deficiency or after exogenous TSH administration – the thyroidal fraction of T3 secretion rises substantially.{{cite journal |last=Silva |first=JE |title=Type II iodothyronine deiodinase is highly expressed in human thyroid |journal=Journal of Clinical Investigation |volume=75 |issue=6 |pages=2291–2295 |year=1985 |doi=10.1172/JCI113934 |pmid=2989330}}
Mechanism
=Intrathyroidal deiodination=
TSH activates cAMP-dependent signalling that stimulates expression and activity of DIO2 (and to a lesser extent DIO1) in follicular cells, promoting rapid conversion of stored T4 to T3 and increasing the T3:T4 ratio of secreted hormone.{{cite journal |last1=Gereben |first1=B |last2=Zavacki |first2=AM |title=Cellular and molecular basis of deiodinase-regulated thyroid hormone signalling |journal=Endocrine Reviews |volume=29 |issue=7 |pages=898–938 |year=2008 |doi=10.1210/er.2008-0019 |pmid=18701647 |pmc=2647704}} TSH concurrently shortens thyroglobulin residence time, favouring release of newly formed T3.
=Quantitative contribution=
Mathematical sensitivity analysis places the shunt gain (GT) at 15–30 pmol s−1 / 109 thyrocytes, sufficient to stabilise FT3 against ±30 % changes in T4 output.{{cite journal |last1=Berberich |first1=J |last2=Dietrich |first2=JW |last3=Hoermann |first3=R |last4=Müller |first4=MA |title=Mathematical modelling of the pituitary–thyroid feedback loop: role of a TSH-T3 shunt and sensitivity analysis |journal=Frontiers in Endocrinology |volume=9 |pages=91 |year=2018 |doi=10.3389/fendo.2018.00091 |doi-access=free |pmid=29619006 |pmc=5871688}}
Physiological role
The shunt acts as a buffering, feed-forward element complementing negative feedback by thyroid hormones on TSH secretion.{{cite journal |last1=Chatzitomaris |first1=A |last2=Hoermann |first2=R |title=Thyroid allostasis – adaptive responses of thyrotropic feedback control |journal=Frontiers in Endocrinology |volume=8 |pages=163 |year=2017 |doi=10.3389/fendo.2017.00163 |doi-access=free |pmid=28775711}} In population studies FT3 varies little across a six-fold range of TSH, whereas FT4 shows a strong log-linear inverse relationship with TSH.{{cite journal |last1=Hoermann |first1=R |last2=Eckl |first2=WA |title=Complex relationship between FT4 and TSH |journal=European Journal of Endocrinology |volume=162 |issue=6 |pages=1123–1129 |year=2010 |doi=10.1530/EJE-10-0106 |pmid=20299491}} The shunt therefore underlies the relative constancy of T3 supply critical for metabolic stability.
Evidence
=Clinical studies=
- In 1 768 euthyroid adults FT3 remained normal across wide TSH and FT4 ranges, whereas 287 athyreotic patients on levothyroxine (LT4) displayed FT3 proportional to exogenous T4, indicating loss of thyroidal T3 secretion.{{cite journal |last1=Hoermann |first1=R |last2=Midgley |first2=JE |title=Dual control of pituitary TSH secretion by thyroxine and triiodothyronine in athyreotic patients |journal=Therapeutic Advances in Endocrinology & Metabolism |volume=8 |issue=6 |pages=83–95 |year=2017 |doi=10.1177/2042018817716401 |pmid=28794850 |pmc=5524252}}
- Serial measurements after recombinant human TSH injection showed a prompt, transient rise of FT3 peaking ≈2 h after the TSH peak, with minimal FT4 change.
- Children in the upper TSH reference quartile had higher FT3 but unchanged FT4 compared with peers in the lower quartile, consistent with TSH-driven T3 secretion.{{cite journal |last1=Wagner |first1=MS |last2=Maia |first2=AL |title=Regulation of Dio2 expression by thyroid hormones in mice |journal=Journal of Endocrinology |volume=193 |issue=3 |pages=435–444 |year=2007 |doi=10.1677/JOE-07-0176 |doi-broken-date=20 May 2025 |pmid=17616620}}
=Experimental studies=
Disruption of Dio2 in mice produced pituitary resistance to T4 and reduced circulating T3, demonstrating the importance of thyroidal DIO2 for systemic hormone balance.{{cite journal |last1=Schneider |first1=MJ |last2=St Germain |first2=DL |title=Pituitary resistance to T4 in Dio2 knockout mice |journal=Molecular Endocrinology |volume=15 |issue=12 |pages=2137–2148 |year=2001 |doi=10.1210/mend.15.12.0745 |pmid=11711423}}
Mathematical modelling
In silico models incorporating a TSH-dependent T3 secretion term replicate the observed circadian FT3 rhythm and the stability of FT3 across variable gland capacities, whereas models without the shunt do not. Sensitivity analysis shows that shunt gain profoundly influences TSH responsiveness and FT3 homeostasis.{{cite journal |last1=Dietrich |first1=JW |last2=Midgley |first2=JE |title=Dynamics of thyroid diseases and thyroid-axis gland masses |journal=Journal of Clinical Medicine |volume=10 |issue=16 |pages=3618 |year=2021 |doi=10.3390/jcm10163618 |doi-access=free |pmid=34442231}}
Clinical significance
=Implications for therapy=
Standard LT4 monotherapy cannot replace the thyroidal component of T3 secretion; a subset of treated patients have low-normal FT3 and persistent symptoms despite normal TSH.{{cite journal |last1=Abdalla |first1=SM |last2=Bianco |first2=AC |title=Defending plasma T3 is a biological priority |journal=Clinical Endocrinology |volume=81 |issue=5 |pages=633–641 |year=2014 |doi=10.1111/cen.12416 |pmid=24548292}} Combination LT4 + LT3 or tailored TSH targets have been proposed to restore physiological FT3 levels in these patients.{{cite journal |last=Mizukoshi |first=W |title=Serum thyroid hormone balance in LT4 monotherapy after radioiodine treatment |journal=Thyroid |volume=29 |issue=9 |pages=1309–1318 |year=2019 |doi=10.1089/thy.2019.0135 |pmid=31411123}}
History
Disproportionate thyroidal T3 secretion under TSH stimulation was described in the 1960s,{{cite journal |last=Laurberg |first=P |title=Mechanisms governing the relative proportions of thyroxine and 3,5,3′-triiodothyronine in thyroid secretion |journal=Metabolism |volume=33 |issue=4 |pages=379–392 |year=1984 |doi=10.1016/0026-0495(84)90203-8 |pmid=6369072}} but the term “TSH-T3 shunt” and its formal cybernetic treatment were introduced in 2012–2018.{{cite journal |last=Dietrich |first=JW |title=TSH and thyrotropic agonists: key actors in thyroid homeostasis |journal=Journal of Thyroid Research |volume=2012 |pages=351864 |year=2012 |doi=10.1155/2012/351864 |doi-access=free |pmid=23365787 |pmc=3544290}}
See also
References
{{Reflist|30em}}
External links
- [https://www.frontiersin.org/articles/10.3389/fendo.2018.00091/ “Mathematical modelling of the pituitary–thyroid feedback loop”] – open-access article (Frontiers in Endocrinology)
- [https://academic.oup.com/edrv/article/29/7/898/2354766 “Deiodinase-regulated thyroid hormone signalling”] – review (Endocrine Reviews)
Further reading
- {{cite journal |last1=Hoermann |first1=R |last2=Midgley |first2=J E M |last3=Larisch |first3=R |last4=Dietrich |first4=J W |title=Recent Advances in Thyroid Hormone Regulation: Toward a New Paradigm for Optimal Diagnosis and Treatment |journal=Frontiers in Endocrinology |volume=8 |pages=364 |date=22 December 2017 |doi=10.3389/fendo.2017.00364 |doi-access=free |pmid=29375474 |pmc=5763098 }}
- {{cite journal |last1=Berberich |first1=J |last2=Dietrich |first2=J W |last3=Hoermann |first3=R |last4=Müller |first4=M A |title=Mathematical Modeling of the Pituitary–Thyroid Feedback Loop: Role of a TSH-T3-Shunt and Sensitivity Analysis |journal=Frontiers in Endocrinology |volume=9 |pages=91 |date=21 March 2018 |doi=10.3389/fendo.2018.00091 |doi-access=free |pmid=29619006 |pmc=5871688 }}
- {{cite journal |last1=Hoermann |first1=R |last2=Pekker |first2=M J |last3=Midgley |first3=J E M |last4=Dietrich |first4=J W |title=The Role of Supporting and Disruptive Mechanisms of FT3 Homeostasis in Regulating the Hypothalamic–Pituitary–Thyroid Axis |journal=Therapeutic Advances in Endocrinology and Metabolism |volume=14 |pages=20420188231158163 |date=14 March 2023 |doi=10.1177/20420188231158163 |pmid=36936128 |pmc=10017955 }}
{{hormones}}
{{DEFAULTSORT:Tsh T3 Shunt}}
{{Draft categories|
}}
{{Drafts moved from mainspace|date=June 2025}}