Dual total correlation

{{About||more information about probability theory and information theory|Mutual information}}

In information theory, dual total correlation,{{cite journal |doi=10.1016/S0019-9958(78)90275-9|title=Nonnegative entropy measures of multivariate symmetric correlations|year=1978|last1=Han|first1=Te Sun|journal=Information and Control|volume=36|issue=2|pages=133–156|doi-access=free}} information rate,{{cite journal |doi=10.1162/comj.2006.30.2.63|title=Spectral Anticipations|year=2006|last1=Dubnov|first1=Shlomo|journal=Computer Music Journal|volume=30|issue=2|pages=63–83|s2cid=2202704}} excess entropy,Nihat Ay, E. Olbrich, N. Bertschinger (2001). A unifying framework for complexity measures of finite systems. European Conference on Complex Systems. [http://www.cabdyn.ox.ac.uk/complexity_PDFs/ECCS06/Conference_Proceedings/PDF/p202.pdf pdf].{{cite journal |doi=10.1140/epjb/e2008-00134-9|title=How should complexity scale with system size?|year=2008|last1=Olbrich|first1=E.|last2=Bertschinger|first2=N.|last3=Ay|first3=N.|last4=Jost|first4=J.|journal=The European Physical Journal B|volume=63|issue=3|pages=407–415|bibcode=2008EPJB...63..407O|s2cid=120391127|doi-access=free}} or binding information{{cite arXiv |eprint=1012.1890v1|last1=Abdallah|first1=Samer A.|last2=Plumbley|first2=Mark D.|title=A measure of statistical complexity based on predictive information|year=2010|class=math.ST}} is one of several known non-negative generalizations of mutual information. While total correlation is bounded by the sum entropies of the n elements, the dual total correlation is bounded by the joint-entropy of the n elements. Although well behaved, dual total correlation has received much less attention than the total correlation. A measure known as "TSE-complexity" defines a continuum between the total correlation and dual total correlation.

Definition

Image:VennInfo3Var.svg of information theoretic measures for three variables x, y, and z. The dual total correlation is represented by the union of the three mutual informations and is shown in the diagram by the yellow, magenta, cyan, and gray regions.]]

For a set of n random variables \{X_1,\ldots, X_n\}, the dual total correlation D(X_1,\ldots, X_n) is given by

: D(X_1,\ldots, X_n) = H\left( X_1, \ldots, X_n \right) - \sum_{i=1}^n H\left( X_i \mid X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n \right) ,

where H(X_{1},\ldots, X_{n}) is the joint entropy of the variable set \{X_{1},\ldots, X_{n}\} and H(X_i \mid \cdots ) is the conditional entropy of variable X_{i}, given the rest.

Normalized

The dual total correlation normalized between [0,1] is simply the dual total correlation divided by its maximum value H(X_{1}, \ldots, X_{n}),

:ND(X_1,\ldots, X_n) = \frac{D(X_1,\ldots, X_n)}{H(X_1,\ldots, X_n)} .

Relationship with Total Correlation

Dual total correlation is non-negative and bounded above by the joint entropy H(X_1, \ldots, X_n).

: 0 \leq D(X_1, \ldots, X_n) \leq H(X_1, \ldots, X_n) .

Secondly, Dual total correlation has a close relationship with total correlation, C(X_1, \ldots, X_n), and can be written in terms of differences between the total correlation of the whole, and all subsets of size N-1:{{cite journal |last1=Varley |first1=Thomas F. |last2=Pope |first2=Maria |last3=Faskowitz |first3=Joshua |last4=Sporns |first4=Olaf |title=Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex |journal=Communications Biology |date=24 April 2023 |volume=6 |issue=1 |page=451 |doi=10.1038/s42003-023-04843-w|doi-access=free |pmid=37095282 |pmc=10125999 }}

: D(\textbf{X}) = (N-1)C(\textbf{X}) - \sum_{i=1}^{N} C(\textbf{X}^{-i})

where \textbf{X} = \{X_1,\ldots, X_n\} and \textbf{X}^{-i} = \{X_1,\ldots, X_{i-1}, X_{i+1},\ldots, X_n\}

Furthermore, the total correlation and dual total correlation are related by the following bounds:

: \frac{C(X_1, \ldots, X_n)}{n-1} \leq D(X_1, \ldots, X_n) \leq (n-1) \; C(X_1, \ldots, X_n) .

Finally, the difference between the total correlation and the dual total correlation defines a novel measure of higher-order information-sharing: the O-information:{{cite journal |last1=Rosas |first1=Fernando E. |last2=Mediano |first2=Pedro A. M. |last3=Gastpar |first3=Michael |last4=Jensen |first4=Henrik J. |title=Quantifying high-order interdependencies via multivariate extensions of the mutual information |journal=Physical Review E |date=13 September 2019 |volume=100 |issue=3 |page=032305 |doi=10.1103/PhysRevE.100.032305|pmid=31640038 |arxiv=1902.11239 |bibcode=2019PhRvE.100c2305R }}

:\Omega(\textbf{X}) = C(\textbf{X}) - D(\textbf{X}) .

The O-information (first introduced as the "enigmatic information" by James and Crutchfield{{cite journal |last1=James |first1=Ryan G. |last2=Ellison |first2=Christopher J. |last3=Crutchfield |first3=James P. |title=Anatomy of a bit: Information in a time series observation |journal=Chaos: An Interdisciplinary Journal of Nonlinear Science |date=1 September 2011 |volume=21 |issue=3 |page=037109 |doi=10.1063/1.3637494|pmid=21974672 |arxiv=1105.2988 |bibcode=2011Chaos..21c7109J }} is a signed measure that quantifies the extent to which the information in a multivariate random variable is dominated by synergistic interactions (in which case \Omega(\textbf{X})<0) or redundant interactions (in which case \Omega(\textbf{X}) > 0.

History

Han (1978) originally defined the dual total correlation as,

:

\begin{align}

& D(X_1,\ldots, X_n) \\[10pt]

\equiv {} & \left[ \sum_{i=1}^n H(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n ) \right] - (n-1) \; H(X_1, \ldots, X_n) \; .

\end{align}

However Abdallah and Plumbley (2010) showed its equivalence to the easier-to-understand form of the joint entropy minus the sum of conditional entropies via the following:

:

\begin{align}

& D(X_1,\ldots, X_n) \\[10pt]

\equiv {} & \left[ \sum_{i=1}^n H(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n ) \right] - (n-1) \; H(X_1, \ldots, X_n) \\

= {} & \left[ \sum_{i=1}^n H(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n ) \right] + (1-n) \; H(X_1, \ldots, X_n) \\

= {} & H(X_1, \ldots, X_n) + \left[ \sum_{i=1}^n H(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n ) - H(X_1, \ldots, X_n) \right] \\

= {} & H\left( X_1, \ldots, X_n \right) - \sum_{i=1}^n H\left( X_i \mid X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n \right)\; .

\end{align}

See also

Bibliography

= Footnotes =

{{reflist}}

= References =

  • {{cite journal |doi=10.1016/S0019-9958(78)91063-X|title=Polymatroidal dependence structure of a set of random variables|year=1978|last1=Fujishige|first1=Satoru|journal=Information and Control|volume=39|pages=55–72|doi-access=free}}
  • {{cite journal |doi=10.1038/s42003-023-04843-w|title=Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex|year=2023|last1=Varley|first1=Thomas|last2=Pope|first2=Maria|last3=Faskowitz|first3=Joshua|last4=Sporns|first4=Olaf|journal= Communications Biology|volume=6 |page=451 |doi-access=free|pmid=37095282 |pmc=10125999}}

Category:Information theory

Category:Probability theory

Category:Covariance and correlation