Energy density Extended Reference Table

{{Short description|none}}

This is an extended version of the energy density table from the main Energy density page:

class="wikitable sortable" style="text-align: right;"

|+Energy densities table

!Storage type

!Specific energy (MJ/kg)

!Energy density (MJ/L)

!Peak recovery efficiency %

!Practical recovery efficiency %

align=left|Arbitrary Antimatter89,875,517,874depends on density
align=left|Deuterium–tritium fusion576,000,000
align=left|Uranium-235 fissile isotope144,000,000{{cite book |last1=Prelas |first1=Mark |title=Nuclear-Pumped Lasers |date=2015 |publisher=Springer |isbn=9783319198453 |page=135 |url=https://books.google.com/books?id=Hmn_CgAAQBAJ&pg=PA135}}1,500,000,000|
align=left|Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor86,000,000
align=left|Reactor-grade uranium (3.5% U-235) in light-water reactor3,456,00035%
align=left|Pu-238 α-decay2,200,000
align=left|Hf-178m2 isomer1,326,00017,649,060
align=left|Natural uranium (0.7% U235) in light-water reactor443,00035%
align=left|Ta-180m isomer41,340689,964
align=left|Metallic hydrogen (recombination energy)216{{Cite journal |last=Silvera |first=Isaac F |last2=Cole |first2=John W |date=2010-03-01 |title=Metallic hydrogen: The most powerful rocket fuel yet to exist |url=https://iopscience.iop.org/article/10.1088/1742-6596/215/1/012194 |journal=Journal of Physics: Conference Series |volume=215 |pages=012194 |doi=10.1088/1742-6596/215/1/012194 |issn=1742-6596}}
align=left|Specific orbital energy of Low Earth orbit (approximate)33.0
align=left|Beryllium + Oxygen23.9{{cite journal|title=The Heat of Formation of Beryllium Oxide1 |journal=Journal of the American Chemical Society |volume=75 |issue=13 |pages=3102–3103 |date=2002-05-01 |doi=10.1021/ja01109a018 |last1 = Cosgrove|first1 = Lee A.|last2=Snyder |first2=Paul E. }}
align=left|Lithium + Fluorine23.75{{Citation needed|date=August 2010}}
align=left|Octaazacubane potential explosive22.9{{cite journal|title=Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?† |journal=Inorganic Chemistry |volume=35 |issue=24 |pages=7124–7133 |date=1996-05-28 |doi=10.1021/ic9606237 |pmid=11666896 |last1 = Glukhovtsev|first1 = Mikhail N.|last2=Jiao |first2=Haijun |last3=Schleyer |first3=Paul von Ragué }}
align=left|Hydrogen + Oxygen13.4{{Cite web|last=Miller|first=Catherine|date=1 February 2021|title=Introduction to Rocket Propulsion|url=https://www.cs.middlebury.edu/~cm2/personal-website/lecture_notes/lecture6.pdf|access-date=9 May 2021|archive-date=9 May 2021|archive-url=https://web.archive.org/web/20210509105240/https://www.cs.middlebury.edu/~cm2/personal-website/lecture_notes/lecture6.pdf|url-status=dead}}
align=left|Gasoline + Oxygen –> Derived from Gasoline13.3{{Citation needed|date=November 2019}}
align=left|Dinitroacetylene explosive - computed{{Citation needed|date=November 2008}}9.8
align=left|Octanitrocubane explosive8.5[https://archive.today/20130105062703/http://www3.interscience.wiley.com/journal/122324589/abstract Wiley Interscience]16.9Octanitrocubane
align=left|Tetranitrotetrahedrane explosive - computed{{Citation needed|date=November 2008}}8.3
align=left|Heptanitrocubane explosive - computed{{Citation needed|date=November 2008}}8.2
align=left|Sodium (reacted with chlorine){{Citation needed|date=November 2008}}7.0349
align=left|Hexanitrobenzene explosive7[https://archive.today/20130105055433/http://www3.interscience.wiley.com/journal/109618256/abstract Wiley Interscience]
align=left|Tetranitrocubane explosive - computed{{Citation needed|date=November 2008}}6.95
align=left|Ammonal (Al+NH4NO3 oxidizer){{Citation needed|date=November 2008}}6.912.7
align=left|Tetranitromethane + hydrazine bipropellant - computed{{Citation needed|date=November 2008}}6.6
align=left|Nitroglycerin6.38{{cite web|url=http://www.fas.org/man/dod-101/navy/docs/es310/chemstry/chemstry.htm |title=Chemical Explosives |publisher=Fas.org |date=2008-05-30 |accessdate=2010-05-07}}10.2Nitroglycerin
align=left|ANFO-ANNM{{Citation needed|date=November 2008}}6.26
align=left|battery, Lithium–air6.12
align=left|Octogen (HMX)5.710.8HMX
align=left|TNT{{cite book |last=Kinney |first=G.F. |author2=K.J. Graham |title=Explosive shocks in air |publisher=Springer-Verlag |year=1985 |isbn=978-3-540-15147-0}}4.6106.92
align=left|Copper Thermite (Al + CuO as oxidizer){{Citation needed|date=November 2008}}4.1320.9
align=left|Thermite (powder Al + Fe2O3 as oxidizer)4.0018.4
align=left|ANFO{{Citation needed|date=November 2008}}3.7
align=left|Hydrogen peroxide decomposition (as monopropellant)2.73.8
align=left|battery, Lithium-ion nanowire2.542995%{{Clarify|date=February 2009|cites do not mention 95%, is it mentioned in the paper "High-performance lithium battery anodes using silicon nanowires" published on Dec. 16 in Nature Nanotechnology? nature.com gives broken link at http://www.nature.com/nnano/press_releases/nnano1207.html . Note "2.54 to 2.72" replaced with 2.54 to get sort to work}}{{cite web |url=http://news-service.stanford.edu/news/2008/january9/nanowire-010908.html |title=Nanowire battery can hold 10 times the charge of existing lithium-ion battery |publisher=News-service.stanford.edu |date=2007-12-18 |accessdate=2010-05-07 |archive-date=2010-01-07 |archive-url=https://web.archive.org/web/20100107182920/http://news-service.stanford.edu/news/2008/january9/nanowire-010908.html |url-status=dead }}
align=left|battery, Lithium Thionyl Chloride (LiSOCl2){{cite web |url=http://www.nexergy.com/lithium-thionyl-chloride.htm |title=Lithium Thionyl Chloride Batteries |publisher=Nexergy |accessdate=2010-05-07 |archive-url=https://web.archive.org/web/20090204131145/http://nexergy.com/lithium-thionyl-chloride.htm |archive-date=2009-02-04 |url-status=dead }}2.5
align=left|Water 220.64 bar, 373.8 °C{{Citation needed|date=November 2008}}{{Clarify|date=November 2008}}1.9680.708
align=left|Kinetic energy penetrator {{Clarify|date=February 2009|where does "1.9 to 3.4" and "30 to 54" come from? Note "to 3.4" and "to 54" removed to get sort to work.}}|1.9|30
align=left|battery, Lithium–Sulfur{{cite web|publisher=Sion Power, Inc. |date=2005-09-28 |url=http://www.sionpower.com/pdf/sion_product_spec.pdf |title=Lithium Sulfur Rechargeable Battery Data Sheet |url-status=dead |archiveurl=https://web.archive.org/web/20080828105501/http://www.sionpower.com/pdf/sion_product_spec.pdf |archivedate=2008-08-28 }}1.80{{cite journal |last= Kolosnitsyn |first= V.S. |author2=E.V. Karaseva |year= 2008 |title = Lithium-sulfur batteries: Problems and solutions |journal= Russian Journal of Electrochemistry |volume= 44 |issue= 5 |pages= 506–509 |doi= 10.1134/s1023193508050029 |s2cid= 97022927 }}1.26
align=left|battery, Fluoride-ion {{Citation needed|date=May 2009}}1.72.8
align=left|battery, Hydrogen closed cycle H fuel cell{{cite web |url=http://www.llnl.gov/str/Mitlit.html |title=The Unitized Regenerative Fuel Cell |publisher=Llnl.gov |date=1994-12-01 |accessdate=2010-05-07 |archive-url=https://web.archive.org/web/20080920152815/https://www.llnl.gov/str/Mitlit.html |archive-date=2008-09-20 |url-status=dead }}1.62
align=left|Hydrazine decomposition (as monopropellant)1.61.6
align=left|Ammonium nitrate decomposition (as monopropellant)1.42.5
align=left|Thermal Energy Capacity of Molten Salt1{{Citation needed|date=May 2009}}98%{{cite web |url=http://www.solar-reserve.com/technology.html |archive-url=https://web.archive.org/web/20080119090114/http://www.solar-reserve.com/technology.html |url-status=dead |archive-date=2008-01-19 |title=Technology |publisher=SolarReserve |accessdate=2010-05-07 }}
align=left|Molecular spring approximate{{Citation needed|date=November 2008}}1
align=left| battery, Lithium–Manganese{{cite web|url=http://www.duracell.com/Procell/chemistries/lithium.asp |title=ProCell Lithium battery chemistry |publisher=Duracell |accessdate=2009-04-21 |archive-url=https://web.archive.org/web/20110710160212/http://www1.duracell.com/procell/chemistries/lithium.asp |archive-date=2011-07-10 |url-status=dead }}{{cite web |url=http://www.corrosion-doctors.org/PrimBatt/table2.htm |publisher=corrosion-doctors.org |title=Properties of non-rechargeable lithium batteries |accessdate=2009-04-21}}0.83-1.011.98-2.09
align=left|battery, Sodium–Sulfur0.72{{cite web |url=http://www.heraldextra.com/news/article_b0372fd8-3f3c-11de-ac77-001cc4c002e0.html |title=New battery could change world, one house at a time |publisher=Heraldextra.com |date=2009-04-04 |accessdate=2010-05-07 |archive-date=2015-10-17 |archive-url=https://web.archive.org/web/20151017163418/http://www.heraldextra.com/news/article_b0372fd8-3f3c-11de-ac77-001cc4c002e0.html |url-status=dead }}1.23{{Citation needed|date=May 2009}}85%{{cite journal|title=Energy Citations Database (ECD) - - Document #5960185 |journal = Proc., Intersoc. Energy Convers. Eng. Conf.; (United States)|volume = 2|publisher=Osti.gov |osti = 5960185|date = August 1984|last1 = Kita|first1 = A.|last2 = Misaki|first2 = H.|last3 = Nomura|first3 = E.|last4 = Okada|first4 = K.}}
align=left|battery, Lithium-ion{{cite web|url=http://www.allaboutbatteries.com/Battery-Energy.html|publisher=AllAboutBatteries.com|title=Battery energy storage in various battery types|accessdate=2009-04-21|archive-url=https://web.archive.org/web/20090428060954/http://www.allaboutbatteries.com/Battery-Energy.html|archive-date=2009-04-28|url-status=dead}}A typically available lithium-ion cell with an Energy Density of 201 wh/kg {{cite web |url=http://www.batteryspace.com/index.asp?PageAction=VIEWPROD&ProdID=2763 |title=Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4 |accessdate=2012-12-14 |url-status=dead |archiveurl=https://web.archive.org/web/20081201065328/http://www.batteryspace.com/index.asp?PageAction=VIEWPROD&ProdID=2763 |archivedate=2008-12-01 }}0.46-0.720.83-3.6{{cite web|url=http://www.globalspec.com/Specifications/Electrical_Electronic_Components/Batteries/Lithium_Batteries|title=Lithium Batteries|accessdate=2010-07-02|archive-date=2011-08-08|archive-url=https://web.archive.org/web/20110808112807/http://www.globalspec.com/Specifications/Electrical_Electronic_Components/Batteries/Lithium_Batteries|url-status=dead}}95%{{cite web |author=Justin Lemire-Elmore |date=2004-04-13 |title=The Energy Cost of Electric and Human-Powered Bicycles |url=http://www.ebikes.ca/sustainability/Ebike_Energy.pdf |page=7 |quote=Table 3: Input and Output Energy from Batteries |accessdate=2009-02-26 |archive-date=2012-09-13 |archive-url=https://web.archive.org/web/20120913095738/http://www.ebikes.ca/sustainability/Ebike_Energy.pdf |url-status=dead }}
align=left|battery, Sodium–Nickel Chloride, High Temperature0.56
align=left| battery, Zinc–manganese (alkaline), long life design0.4-0.591.15-1.43
align=left|battery, Silver-oxide0.471.8
align=left|Flywheel0.36-0.5{{Cite web |url=http://www.itpower.co.uk/investire/pdfs/flywheelrep.pdf |title=Storage Technology Report, ST6 Flywheel |access-date=2012-12-14 |archive-url=https://web.archive.org/web/20130114062530/http://www.itpower.co.uk/investire/pdfs/flywheelrep.pdf |archive-date=2013-01-14 |url-status=dead }}{{cite web | title = Next-gen Of Flywheel Energy Storage | url = http://www.pddnet.com/article-next-gen-of-flywheel-energy-storage/ | publisher = Product Design & Development | accessdate = 2009-05-21 | url-status = dead | archiveurl = https://web.archive.org/web/20100710052927/http://www.pddnet.com/article-next-gen-of-flywheel-energy-storage/ | archivedate = 2010-07-10 }}|
align=left|5.56 × 45 mm NATO bullet muzzle energy density{{Clarify|date=February 2009|where does "0.4 to 0.8" and "3.2 to 6.4" come from? Note "to 0.8" and "to 6.4" removed to get sort to work. Note: 0.4..0.5 MJ/kg is an energy density of flying bullet, 2kJ/0.0035kg}}| 0.43.2
align=left|battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries{{Cite web |url=http://www.ovonic.com/PDFs/ovonic-materials/Ovonic-Fetcenko-2008-Wolsky-Seminar.pdf |title=Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008 |access-date=2012-12-14 |archive-url=https://web.archive.org/web/20100104134725/http://ovonic.com/PDFs/ovonic-materials/Ovonic-Fetcenko-2008-Wolsky-Seminar.pdf |archive-date=2010-01-04 |url-status=dead }}0.41.55
align=left|Liquid Nitrogen0.349
align=left|WaterEnthalpy of Fusion0.3340.334
align=left|battery, Zinc–Bromine flow (ZnBr){{cite web |title=ZBB Energy Corp |url=http://www.zbbenergy.com/technology.htm |archiveurl=https://web.archive.org/web/20071015134212/http://zbbenergy.com/technology.htm |archivedate=2007-10-15 |quote=75 to 85 watt-hours per kilogram}}|0.27
align=left|battery, Nickel–metal hydride (NiMH), High-Power design as used in cars[http://www.movitrom.com/files_pdf/baterias/saft/NHE_en.pdf High Energy Metal Hydride Battery] {{webarchive|url=https://web.archive.org/web/20090930120510/http://www.movitrom.com/files_pdf/baterias/saft/NHE_en.pdf |date=2009-09-30 }}0.2500.493
align=left|battery, Nickel–Cadmium (NiCd)0.141.0880%
align=left| battery, Zinc–Carbon0.130.331
align=left|battery, Lead–acid0.140.36
align=left|battery, Vanadium redox0.09{{Citation needed|date=May 2009}}0.1188|7070-75%
align=left|battery, Vanadium–Bromide redox0.180.25280%–90%{{cite web |url=http://www.vfuel.com.au/infosheet.pdf |title=Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc |accessdate=2010-05-07 |archive-url=https://web.archive.org/web/20101122114137/http://www.vfuel.com.au/infosheet.pdf |archive-date=2010-11-22 |url-status=dead }}
align=left|Capacitor Ultracapacitor0.0199{{cite web|url=http://maxwell.com/ultracapacitors/products/large-cell/bcap3000.asp |title=Maxwell Technologies: Ultracapacitors - BCAP3000 |publisher=Maxwell.com |accessdate=2010-05-07}}0.050{{Citation needed|date=May 2009}}
align=left|Capacitor Supercapacitor0.01{{Citation needed|date=May 2009}}80%–98.5%{{cite web |last=Zdenek |first=Cerovský |last2=Pavel |first2=Mindl |title=Hybrid drive with super-capacitor energy storage |url=http://www2.fs.cvut.cz/web/fileadmin/documents/12241-BOZEK/publikace/2004/Sup-Cap-Energy-Storage.pdf |url-status=dead |archiveurl=https://web.archive.org/web/20120722130618/http://www3.fs.cvut.cz/web/fileadmin/documents/12241-BOZEK/publikace/2004/Sup-Cap-Energy-Storage.pdf |archivedate=2012-07-22 |accessdate=2012-12-14 |website=Faculty of Mechanical Engineering CTU in Prague}}39%–70%
align=left|Superconducting magnetic energy storage00.008[http://www.accel.de/pages/2_mj_superconducting_magnetic_energy_storage_smes.html] {{webarchive|url=https://web.archive.org/web/20100216175256/http://www.accel.de/pages/2_mj_superconducting_magnetic_energy_storage_smes.html|date=February 16, 2010}}>95%
align=left|Capacitor0.002{{Cite web | url=http://www.doc.ic.ac.uk/~mpj01/ise2grp/energystorage_report/node9.html | title=Department of Computing | access-date=2012-12-14 | archive-url=https://web.archive.org/web/20061006125946/http://www.doc.ic.ac.uk/~mpj01/ise2grp/energystorage_report/node9.html | archive-date=2006-10-06 | url-status=dead }}
align=left|Neodymium magnet0.003{{Cite journal |last=Rahman |first=M. |last2=Slemon |first2=G. |date=September 1985 |title=Promising applications of neodymium boron Iron magnets in electrical machines |url=http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf |url-status=dead |journal=IEEE Transactions on Magnetics |language=en |volume=21 |issue=5 |pages=1712–1716 |doi=10.1109/TMAG.1985.1064113 |issn=0018-9464 |archive-url=https://web.archive.org/web/20110513205201/http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf |archive-date=13 May 2011}}
align=left|Ferrite magnet0.0003
align=left|Spring power (clock spring), torsion spring0.0003{{cite web|url=http://garagedoor.org/residential/torsion-springs.php |title=Garage Door Springs |publisher=Garagedoor.org |accessdate=2010-05-07}}0.0006
class="sortbottom"

!Storage type

!Energy density by mass (MJ/kg)

!Energy density by volume (MJ/L)

!Peak recovery efficiency %

!Practical recovery efficiency %

Notes

{{Reflist|colwidth=30em}}

Category:Energy storage