Enhanced Fujita scale#Rating classifications

{{Short description|Tornado intensity rating scale}}

{{Redirect|EF5|the radioisotope-containing organic chemical used in cancer research|18F-EF5}}

{{Use mdy dates|date=April 2019}}

{{EF small}}

File:The National Weather Service Six-Step Wording for the Enhanced Fujita Scale.jpg's arrow showing the EF scale. This includes a description word for each level of the scale.]]

The Enhanced Fujita scale (abbreviated EF-Scale) is a scale that rates tornado intensity based on the severity of the damage a tornado causes. It is used in the United States and France, among other countries.{{cite web | url=https://www.keraunos.org/recherche/comprendre-les-orages-pedagogie-vulgarisation/tornades-trombes-tubas/intensite-tornade-echelle-fujita-amelioree-ef-f-scale.html | title=Intensité des tornades : l'Échelle améliorée de Fujita - Pédagogie - Comprendre les orages - Keraunos - Observatoire français des tornades et orages violents }} The EF scale is also unofficially used in other countries, including China and Brazil.{{cite journal | url=https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5369 | doi=10.1002/joc.5369 | title=Tornado climatology of China | date=2018 | last1=Chen | first1=Jiayi | last2=Cai | first2=Xuhui | last3=Wang | first3=Hongyu | last4=Kang | first4=Ling | last5=Zhang | first5=Hongshen | last6=Song | first6=Yu | last7=Zhu | first7=Hao | last8=Zheng | first8=Wei | last9=Li | first9=Fengju | journal=International Journal of Climatology | volume=38 | issue=5 | pages=2478–2489 | bibcode=2018IJCli..38.2478C }}{{Cite web |last=brunozribeiro |date=2023-06-09 |title=PRETS completes 5 years of data! |url=http://prevots.org/2023/06/prets-completa-5-anos-de-dados/#:~:text=Em%201%20jun%202023,%20a%20plataforma%20de%20registros,severo%20no%20Brasil%20s%C3%A3o%20catalogados%20a%20cada%20ano. |access-date=2024-12-20 |website=Reporting Platform and Voluntary Network of Severe Storm Observers (PREVOTS) |language=pt, en, es |publication-place=Brazil}} The rating of a tornado is determined by conducting a tornado damage survey.

The scale has the same basic design as the original Fujita scale—six intensity categories from zero to five, representing increasing degrees of damage. It was revised to reflect better examinations of tornado damage surveys, in order to align wind speeds more closely with associated storm damage. Better standardizing and elucidating what was previously subjective and ambiguous, it also adds more types of structures and vegetation, expands degrees of damage, and better accounts for variables such as differences in construction quality. An "EF-Unknown" (EFU) category was later added for tornadoes that cannot be rated due to a lack of damage evidence.{{cite web |last1=Murphy |first1=John D. |date=26 July 2021 |title=National Weather Service Instruction 10-1605 |url=https://www.weather.gov/media/directives/010_pdfs/pd01016005curr.pdf |access-date=20 April 2025 |publisher=National Weather Service |pages=A-77–78}}

As with the Fujita scale, the Enhanced Fujita scale is a damage scale and only an estimate for actual wind speeds. While the wind speeds associated with the damage listed did and have not undergone empirical analysis (such as detailed physical or any numerical modeling) due to expensive costs, the wind speeds were obtained through a process called expert elicitation, which was based on various engineering studies since the 1970s as well as from the field experience of meteorologists and engineers. Unlike the original Fujita scale and International Fujita scale, ratings on the Enhanced Fujita scale are based solely off the effects of 3-second gusts on any given damage indicator.{{cite web | title = The Enhanced Fujita Scale (EF Scale)| publisher = Storm Prediction Center| date = February 1, 2007| url = http://www.spc.noaa.gov/efscale/| access-date = June 21, 2009 }}

History

The Enhanced Fujita scale replaced the decommissioned Fujita scale that was introduced in 1971 by Ted Fujita.Fujita, T. Theodore (February 1971) [https://swco-ir.tdl.org/handle/10605/261875 "Proposed characterization of tornadoes and hurricanes by area and intensity"]. SMRP (Satellite and Mesometeorology Research Project) Research Paper 91 (Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA) 42 pages. Operational use began in the United States on February 1, 2007, followed by Canada on April 1, 2013, who uses a modified version known as the CEF-scale.{{Cite web |title=Fujita Tornado Damage Scale |url=http://www.spc.noaa.gov/faq/tornado/f-scale.html |website=www.spc.noaa.gov}}{{Cite web |title=Tornado Scale - The Enhanced Fujita Scale |url=http://www.tornadofacts.net/tornado-scale.php |website=TornadoFacts.net |url-status=live |archive-url=https://web.archive.org/web/20171218075226/http://www.tornadofacts.net/tornado-scale.php |archive-date= Dec 18, 2017 }}{{cite web |date=May 10, 2013 |title=Enhanced Fujita Scale |url=http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=41E875DA-1 |publisher=Environment Canada}}{{cite book |last1=Repetto |first1=Maria Pia |last2=Burlando |first2=Massimiliano |title=Thunderstorm Outflows and their Impact on Structures |date=March 2023 |publisher=University of Genoa |isbn=978-88-3618-210-7 |page=31 |url=https://gup.unige.it/sites/gup.unige.it/files/pagine/Thunderstorm_Outflows_and_their_Impact_on_Structures_ebook.pdf |access-date=11 June 2024 |quote=Next, four damage-based wind speed rating methods for tornados are introduced: the Fujita-Scale (F-Scale); the Enhanced Fujita-Scale (EF-Scale); the Canadian Enhanced Fujita-Scale (CEF-Scale); and the Japanese Enhanced Fujita-Scale (JEF-Scale)...The CEF-Scale was proposed in 2013 by Environment Canada, closely following the EF-Scale, while the CEF-Scale uses 31 DIs.}}{{cite web |author1=Pieter Groenemeijer (ESSL) |author2=Lothar Bock (DWD) |author3=Juan de Dios Soriano (AEMet) |author4=Maciej Dutkiewicz (Bydgoszcz University of Science and Technology) |author5=Delia Gutiérrez-Rubio (AEMet) |author6=Alois M. Holzer (ESSL) |author7=Martin Hubrig |author8=Rainer Kaltenberger |author9=Thilo Kühne (ESSL) |author10=Mortimer Müller (Universität für Bodenkultur) |author11=Bas van der Ploeg |author12=Tomáš Púčik (ESSL) |author13=Thomas Schreiner (ESSL) |author14=Miroslav Šinger (SHMI) |author15=Gabriel Strommer (ESSL) |author16=Andi Xhelaj (University of Genova) |title=The International Fujita (IF) Scale |url=https://www.essl.org/cms/wp-content/uploads/IF-scale_v1.0.pdf |publisher=European Severe Storms Laboratory |access-date=30 July 2023 |date=30 July 2023}} It has also been in use in France since 2008, albeit modified slightly by using damage indicators that take into account French construction standards, native vegetation, and the use of metric units.{{cite web |last=KERAUNOS |title=Intensité des tornades : l'échelle de Fujita améliorée |url=https://www.keraunos.org/recherche/comprendre-les-orages-pedagogie-vulgarisation/tornades-trombes-tubas/intensite-tornade-echelle-fujita-amelioree-ef-f-scale.html}} In Brazil, the EF Scale is used by the Reporting Platform and Voluntary Network of Severe Storm Observers (PREVOTS) since June 2018. Similarly, the Japanese implementation of the scale is also modified along similar lines; the Japanese variant is referred to locally in Japan as the JEF or Japanese Enhanced Fujita Scale.{{Cite journal |last1=Suzuki |first1=Shota |last2=Tanaka |first2=Yoshinobu |title=The Japanese Enhanced Fujita Scale: Its Development and Implementation |url=https://ams.confex.com/ams/97Annual/webprogram/Manuscript/Paper303781/EXTENDED_ABSTRACT_20170228b.pdf |journal=Japan Meteorological Agency}} The scale is also used unofficially in other countries, such as China.{{Cite journal |last1=Chen |first1=Jiayi |last2=Cai |first2=Xuhui |last3=Wang |first3=Hongyu |last4=Kang |first4=Ling |last5=Zhang |first5=Hongshen |last6=Song |first6=Yu |last7=Zhu |first7=Hao |last8=Zheng |first8=Wei |last9=Li |first9=Fengju |date=April 2018 |title=Tornado climatology of China |url=https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5369 |journal=International Journal of Climatology |language=en |volume=38 |issue=5 |pages=2478–2489 |doi=10.1002/joc.5369 |bibcode=2018IJCli..38.2478C |issn=0899-8418}}

The newer scale was publicly unveiled by the National Weather Service at a conference of the American Meteorological Society in Atlanta on February 2, 2006. It was developed from 2000 to 2004 by the Fujita Scale Enhancement Project of the Wind Science and Engineering Research Center at Texas Tech University, which brought together dozens of expert meteorologists and civil engineers in addition to its own resources.{{cite web |title=Enhanced Fujita Scale - Tornado Damage Scale |url=https://www.factsjustforkids.com/weather-facts/tornado-facts-for-kids/enhanced-fujita-scale.html |access-date=June 14, 2019 |website=factsjustforkids.com}}

The scale was used for the first time in the United States a year after its public announcement when parts of central Florida were struck by multiple tornadoes, the strongest of which were rated at EF3 on the new scale.

In November 2022, a research paper was published that revealed a more standardized EF-scale was in the works. This newer scale is expected to combine and create damage indicators, and introduce new methods of estimating wind speeds in tornadoes. Some of these newer methods include mobile doppler radar and forensic engineering.Marshall, Tim & Brown-Giammanco, Tanya & Krautwurst, Samantha & Toledo, Nicholas. (2022). On the Current Revision of the Enhanced Fujita (EF) Scale.

In 2024, Anthony W. Lyza, Matthew D. Flournoy, and A. Addison Alford, researchers with the National Severe Storms Laboratory, Storm Prediction Center, CIWRO, and the University of Oklahoma's School of Meteorology, published a paper stating, ">20% of supercell tornadoes may be capable of producing EF4–EF5 damage".{{cite journal |last1=Lyza |first1=Anthony W. |last2=Flournoy |first2=Matthew D. |last3=Alford |first3=A. Addison |title=Comparison of Tornado Damage Characteristics to Low-Altitude WSR-88D Radar Observations and Implications for Tornado Intensity Estimation |journal=Monthly Weather Review |date=19 March 2024 |volume=-1 |issue=aop |pages=1689–1710 |doi=10.1175/MWR-D-23-0242.1 |url=https://journals.ametsoc.org/view/journals/mwre/aop/MWR-D-23-0242.1/MWR-D-23-0242.1.xml |access-date=19 March 2024 |publisher=National Oceanic and Atmospheric Administration and University of Oklahoma via the American Meteorological Society |bibcode=2024MWRv..152.1689L |format=Academic publication}}

Parameters

The seven categories for the EF scale are listed below, in order of increasing intensity. Although the wind speeds and photographic damage examples have been updated, the damage descriptions given are based on those from the Fujita scale, which are more or less still accurate. However, for the actual EF scale in practice, damage indicators (the type of structure which has been damaged) are predominantly used in determining the tornado intensity.

class="wikitable"
rowspan="2" | Scale

! colspan="2" | {{nowrap|Wind speed estimate{{cite web | title = Enhanced F Scale for Tornado Damage| publisher = Storm Prediction Center| url = http://www.spc.noaa.gov/efscale/ef-scale.html| access-date = June 21, 2009 }}}}

! rowspan="2" | Frequency{{cite web | title = Storm Prediction Center WCM Data| publisher = Storm Prediction Center| url = https://www.spc.noaa.gov/wcm/data/| access-date = September 15, 2021 }}

! rowspan="2" | Potential Damage

! rowspan="2" | Example of damage

mph

! km/h

align="center" bgcolor="#{{storm color|unknown}}" | EFU

| style="text-align:center;"| N/A

style="text-align:center;"| N/A

| style="text-align:center;"| 3.11%

| {{Anchor|EFU}}No surveyable damage.{{pb}}Intensity cannot be determined due to a lack of information. This rating applies to tornadoes that traverse areas with no damage indicators, cause damage in an area that cannot be accessed by a survey, or cause damage that cannot be differentiated from that of another tornado.

| align="center" | N/A

align="center" bgcolor="#{{storm color|storm}}" | EF0

| style="text-align:center;"| 65–85

style="text-align:center;"| 105–137

| style="text-align:center;"| 52.82%

| {{Anchor|EF0}}Minor damage.{{pb}}Well-built structures are typically unscathed, though sometimes sustaining broken windows, with minor damage to roofs and chimneys. Billboards and large signs can be knocked down. Trees may have large branches broken off and may be uprooted if they have shallow roots.{{Cite web|title=Garrett's Blog: Mobile Home Tornado Risk|url=https://www.5newsonline.com/article/weather/garretts-blog-mobile-home-tornado-risk/527-8d21a71a-ca84-4b95-bc1a-b55744b0a2af|access-date=2020-09-30|website=5newsonline.com|date=February 28, 2013|language=en-US}}

| File:Sunset Beach EF0 damage.jpg

align="center" bgcolor="#{{storm color|cat1}}" | EF1

| style="text-align:center;"| 86–110

style="text-align:center;"| 138–177

| style="text-align:center;"| 32.98%

| {{Anchor|EF1}}Moderate damage {{pb}}Damage to mobile homes and other temporary structures becomes significant, and cars and other vehicles may be pushed off the road or flipped. Permanent structures can suffer major damage to their roofs.

| File:EF1 damage Richardson, Texas.jpg

align="center" bgcolor="#{{storm color|cat2}}" | EF2

| style="text-align:center;"| 111–135

style="text-align:center;"| 178–217

| style="text-align:center;"| 8.41%

| {{Anchor|EF2}}Considerable damage {{pb}}Well-built structures can suffer serious damage, including roof loss, and the collapse of some exterior walls may occur in poorly built structures. Mobile homes, however, are destroyed. Vehicles can be lifted off the ground, and lighter objects can become small missiles, causing damage outside of the tornado's main path. Wooded areas have a large percentage of their trees snapped or uprooted.

| File:WelchEF2Damage2012.jpg

align="center" bgcolor="#{{storm color|cat3}}" | EF3

| style="text-align:center;"| 136–165

style="text-align:center;"| 218–266

| style="text-align:center;"| 2.18%

| {{Anchor|EF3}}Severe damage {{pb}}A few parts of affected buildings are left standing. Well-built structures lose all outer and some inner walls. Unanchored homes are swept away, and homes with poor anchoring may collapse entirely. Trains and train cars are all overturned. Small vehicles and similarly sized objects are lifted off the ground and tossed as projectiles. Wooded areas suffer an almost total loss of vegetation and some tree debarking may occur.

| File:January 23, 2012, Center Point, Alabama tornado damage.JPG

align="center" bgcolor="#{{storm color|cat4}}" | EF4

| style="text-align:center;"| 166–200

style="text-align:center;"| 267–322

| style="text-align:center;"| 0.45%

| {{Anchor|EF4}}Devastating damage {{pb}}Well-built homes are reduced to a short pile of medium-sized debris on the foundation. Homes with poor or no anchoring are swept completely away. Large, heavy vehicles, including airplanes, trains, and large trucks, can be pushed over, flipped repeatedly, or picked up and thrown. Large, healthy trees are entirely debarked and snapped off close to the ground or uprooted altogether and turned into flying projectiles. Passenger cars and similarly sized objects can be picked up and flung for considerable distances.

| File:Moore, OK EF4 damage DOD9.jpg

align="center" bgcolor="#{{storm color|cat5}}" | EF5

| style="text-align:center;"| 201+

style="text-align:center;" | 323+

| style="text-align:center;"| 0.05%

| {{Anchor|EF5}}Incredible damage {{pb}}Well-built and well-anchored homes are taken off their foundations and they go into the air before obliteration. The wreckage of those homes is flung for miles and those foundations are swept completely clean. Large, steel-reinforced structures such as schools are completely leveled. Low-lying grass and vegetation are shredded from the ground. Trees are completely debarked and snapped. Very little recognizable structural debris is generated with most materials reduced to a coarse mix of small, granular particles and dispersed. Large, multiple-ton steel frame vehicles and farm equipment are often mangled beyond recognition and tossed miles away or reduced entirely to unrecognizable parts. Tall buildings collapse or have severe structural deformations. The official description of this damage highlights the extreme nature of the destruction, noting that "incredible phenomena can and will occur". (Most recent example: 2013 Moore tornado)

| File:EF5damageMoore2013.jpg

=Damage indicators and degrees of damage=

The EF scale currently has 28 damage indicators (DI), or types of structures and vegetation, each with a varying number of degrees of damage (DoD). Each structure has a maximum DoD value, which is given by total destruction. Lesser damage to a structure will yield lower DoD values.{{cite book|last=McDonald|first=James|author2=Kishor C. Mehta|title=A recommendation for an Enhanced Fujita scale (EF-Scale)|publisher=Wind Science and Engineering Research Center, Texas Tech University|date=October 10, 2006|location=Lubbock, Texas|url=http://www.depts.ttu.edu/weweb/Pubs/fscale/EFScale.pdf|access-date=May 21, 2013}} The links in the right column of the following table describe the degrees of damage for the damage indicators listed in each row.

class="wikitable sortable"
DI No.Damage indicator (DI)Maximum degrees of damage
style="text-align:center;"| 1Small barns or farm outbuildings (SBO)

| style="text-align:center;"| 8c:File:EF DI1 (SBO).jpg

style="text-align:center;"| 2One- or two-family residences (FR12)

| style="text-align:center;"| 10c:File:EF DI2 (FR12).jpg

style="text-align:center;"| 3Manufactured home – single wide (MHSW)

| style="text-align:center;"| 9c:File:EF DI3 (MHSW).jpg

style="text-align:center;"| 4Manufactured home – double wide (MHDW)style="text-align:center;"| 12c:File:EF DI4 (MHDW).jpg
style="text-align:center;"| 5Apartments, condos, townhouses [three stories or less] (ACT)

| style="text-align:center;"| 6c:File:EF DI5 (ACT).jpg

style="text-align:center;"| 6Motel (M)

| style="text-align:center;"| 10c:File:EF DI6 (M).jpg

style="text-align:center;"| 7Masonry apartment or motel building (MAM)

| style="text-align:center;"| 7c:File:EF DI7 (MAM).jpg

style="text-align:center;"| 8Small retail building [fast-food restaurants] (SRB)

| style="text-align:center;"| 8c:File:EF DI8 (SRB).jpg

style="text-align:center;"| 9Small professional building [doctor's office, branch banks] (SPB)

| style="text-align:center;"| 9c:File:EF DI9 (SPB).jpg

style="text-align:center;"| 10Strip mall (SM)

| style="text-align:center;"| 9c:File:EF DI10 (SM).jpg

style="text-align:center;"| 11Large shopping mall (LSM)

| style="text-align:center;"| 9c:File:EF DI11 (LSM).jpg

style="text-align:center;"| 12Large, isolated retail building [Wal-Mart, Home Depot] (LIRB)

| style="text-align:center;"| 7c:File:EF DI12 (LIRB).jpg

style="text-align:center;"| 13Automobile showroom (ASR)

| style="text-align:center;"| 8c:File:EF DI13 (ASR).jpg

style="text-align:center;"| 14Automobile service building (ASB)

| style="text-align:center;"| 8c:File:EF DI14 (ASB).jpg

style="text-align:center;"| 15Elementary school [single-story; interior or exterior hallways] (ES)

| style="text-align:center;"| 10c:File:EF DI15 (ES).jpg

style="text-align:center;"| 16Junior or senior high school (JHSH)

| style="text-align:center;"| 11c:File:EF DI16 (JHSH).jpg

style="text-align:center;"| 17Low-rise building [1–4 stories] (LRB)

| style="text-align:center;"| 7c:File:EF DI17 (LRB).jpg

style="text-align:center;"| 18Mid-rise building [5–20 stories] (MRB)

| style="text-align:center;"| 10c:File:EF DI18 (MROB).jpg

style="text-align:center;"| 19High-rise building [more than 20 stories] (HRB)

| style="text-align:center;"| 10c:File:EF DI19 (HROB).jpg

style="text-align:center;"| 20Institutional building [hospital, government or university building] (IB)

| style="text-align:center;"| 11c:File:EF DI20 (IB).jpg

style="text-align:center;"| 21Metal building system (MBS)style="text-align:center;"| 8c:File:EF DI21 (MBS).jpg
style="text-align:center;"| 22Service station canopy (SSC)style="text-align:center;"| 6c:File:EF DI22 (SSC).jpg
style="text-align:center;"| 23Warehouse building [tilt-up walls or heavy-timber construction] (WHB)

| style="text-align:center;"| 7c:File:EF DI23 (WHB).jpg

style="text-align:center;"| 24Electrical transmission lines (ETL)

| style="text-align:center;"|6c:File:EF DI 24 (ETL).jpg

style="text-align:center;"| 25Free-standing towers (FST)

| style="text-align:center;"|3c:File:EF DI25 (FST).jpg

style="text-align:center;"| 26Free-standing light poles, luminary poles, flag poles (FSP)

| style="text-align:center;"| 3c:File:EF DI26 (FSP).jpg

style="text-align:center;"| 27Trees: hardwood (TH)

| style="text-align:center;"| 5c:File:EF DI27 (TH).jpg

style="text-align:center;"| 28Trees: softwood (TS)

| style="text-align:center;"| 5c:File:EF DI28 (TS).jpg

Differences from the Fujita scale

The Enhanced Fujita Scale takes into account the quality of construction and standardizes different kinds of structures. The wind speeds on the original scale were deemed by meteorologists and engineers as being too high, and engineering studies indicated that slower winds than initially estimated cause the respective degrees of damage.Wind Science and Engineering Center. (2006). A recommendation for an enhanced Fujita scale (EF-scale). Retrieved from National Weather Service Storm Prediction Center website https://www.spc.noaa.gov The old scale lists an F5 tornado as wind speeds of {{convert|261|-|318|mph|abbr=on|0}}, while the new scale lists an EF5 as a tornado with winds above {{convert|200|mph|abbr=on|0}}, found to be sufficient to cause the damage previously ascribed to the F5 range of wind speeds. None of the tornadoes in the United States recorded before February 1, 2007, were re-categorized during and after the transition to the EF Scale.

Essentially, there is no functional difference in how tornadoes are rated. The old ratings and new ratings are smoothly connected with a linear formula. The only differences are adjusted wind speeds, measurements of which were not used in previous ratings, and refined damage descriptions; this is to standardize ratings and to make it easier to rate tornadoes which strike few structures. Twenty-eight Damage Indicators (DI), with descriptions such as "double-wide mobile home" or "strip mall", are used along with Degrees of Damage (DoD) to determine wind estimates. Different structures, depending on their building materials and ability to survive high winds, have their own DIs and DoDs. Damage descriptors and wind speeds will also be readily updated as new information is learned. Some differences do exist between the two scales in the ratings assigned to damage. An EF5 rating on the new scale requires a higher standard of construction in houses than does an F5 rating on the old scale. So, the complete destruction and sweeping away of a typical American frame home, which would likely be rated F5 on the Fujita scale, would probably be rated EF4 or lower.{{cite journal |last1=Doswell |first1=Charles A. |last2=Brooks |first2=Harold E. |last3=Dotzek |first3=Nikolai |title=On the Implementation of the Enhanced Fujita Scale in the USA |journal=Atmospheric Research |date=July 2009 |volume=93 |issue=1–3 |pages=556–557 |doi=10.1016/j.atmosres.2008.11.003 |bibcode=2009AtmRe..93..554D |url=https://elib.dlr.de/59709/1/dos.pdf |access-date=20 January 2020}}

Since the EF Scale still uses actual tornado damage and similar degrees of damage for each category to estimate the storm's wind speed, the National Weather Service states that the scale will likely not lead to an increase in the number of tornadoes classified as EF5. Additionally, the upper bound of the wind speed range for EF5 is open—in other words, there is no maximum wind speed designated.

Rating classifications

{{Multiple issues|section=yes|

{{Expand section|small=no|date=May 2013}}

{{More citations needed section|date=January 2023}}

}}

class="wikitable" style="text-align:center; float:right; margin:0.5em 0 1.3em 1.4em;"

|+ Tornado rating classifications

EF0

! EF1

! EF2

! EF3

! EF4

! EF5

colspan="1" style="background: #{{storm colour|storm}};" | Weak

| colspan="1" style="background: #{{storm colour|cat1}};" | Moderate

| colspan="1" style="background: #{{storm colour|cat2}};" | Strong

| colspan="1" style="background: #{{storm colour|cat3}};" | Severe

| colspan="1" style="background: #{{storm colour|cat4}};" | Extreme

| colspan="1" style="background: #{{storm colour|cat5}};" | Catastrophic

colspan="2" style="background: #{{storm colour|cat1}};" | Weak

| colspan="2" style="background: #{{storm colour|cat3}};" | Strong

| colspan="2" style="background: #{{storm colour|cat5}};" | Violent

colspan="2" |

| colspan="4" style="background: #{{storm colour|cat2}};" | Significant

colspan="3" |

| colspan="3" style="background: #{{storm colour|cat4}};" | Intense

For purposes such as tornado climatology studies, Enhanced Fujita scale ratings may be grouped into classes.{{cite book | last = Grazulis | first = Thomas P. |author-link = Thomas P. Grazulis | title = Significant Tornadoes 1680–1991 |date=July 1993 | publisher = The Tornado Project of Environmental Films | location = St. Johnsbury, Vermont | isbn = 1-879362-03-1 }}[http://www.tornadoproject.com/fscale/fscale.htm The Fujita Scale of Tornado Intensity] {{webarchive |url=https://web.archive.org/web/20111230005516/http://www.tornadoproject.com/fscale/fscale.htm |date=December 30, 2011 }} at tornadoproject.com{{cite web | url= http://www.nssl.noaa.gov/hazard/ | title= Severe Thunderstorm Climatology | date= March 29, 2013 | publisher= National Severe Storms Laboratory, National Oceanic and Atmospheric Administration, US Department of Commerce | access-date= May 22, 2013 | archive-url= https://web.archive.org/web/20121004084424/http://www.nssl.noaa.gov/hazard/ | archive-date= October 4, 2012 | url-status= dead }} Classifications are also used by NOAA's Storm Prediction Center to determine whether the tornado was "significant". This same classification is also used by the National Weather Service. The National Weather Service of Quad Cities use a modified EF scale wording, which gives a new term for each rating on the scale, going from weak to catastrophic.{{cite web |title=The Tornado Outbreak of March 31, 2023 |url=https://www.weather.gov/dvn/summary_03312023 |publisher=National Weather Service Quad Cities |access-date=21 July 2023}}

The table shows other variations of the tornado rating classifications based on certain areas.

{{Clear}}

See also

References

{{Reflist}}

  • {{Cite journal |last=Edwards |first=Roger |author-link= Roger Edwards (meteorologist) |author2=J. G. LaDue |author3=J. T. Ferree |author4=K. Scharfenberg |author5=C. Maier |author6=W. L. Coulbourne |date=May 2013 |title=Tornado Intensity Estimation: Past, Present, and Future |journal=Bull. Amer. Meteor. Soc. |volume=94 |issue=5 |pages=641–53 |bibcode=2013BAMS...94..641E |doi=10.1175/BAMS-D-11-00006.1 |doi-access=free |s2cid=7842905}}