Erdős distinct distances problem
{{Short description|Problem in discrete geometry}}
In discrete geometry, the Erdős distinct distances problem states that every set of points in the plane has a nearly-linear number of distinct distances. It was posed by Paul Erdős in 1946{{cite journal
| first=Paul | last=Erdős | author-link=Paul Erdős
| url=http://www.renyi.hu/~p_erdos/1946-03.pdf
| title=On sets of distances of points
| journal=American Mathematical Monthly
| volume=53
| issue=5
| year=1946
| pages=248–250
| doi=10.2307/2305092
|jstor=2305092}}{{citation
| first1=Julia | last1=Garibaldi
| first2=Alex | last2=Iosevich
| first3=Steven | last3=Senger
| title=The Erdős Distance Problem
| title-link = The Erdős Distance Problem
| year=2011
| publisher=American Mathematical Society
| place=Providence, RI
| mr=2721878
| isbn=978-0-8218-5281-1
| series=Student Mathematical Library
| volume=56}} and almost proven by Larry Guth and Nets Katz in 2015.{{cite journal
| first1=Larry | last1=Guth | authorlink1=Larry Guth
| first2= Nets Hawk | last2=Katz | authorlink2=Nets Katz
| journal=Annals of Mathematics
| doi=10.4007/annals.2015.181.1.2
| title=On the Erdős distinct distances problem in the plane
| year=2015
| pages=155–190
| volume=181
| issue=1
| zbl=1310.52019
| arxiv=1011.4105
| mr=3272924}}[http://terrytao.wordpress.com/2010/11/20/the-guth-katz-bound-on-the-erdos-distance-problem/ The Guth-Katz bound on the Erdős distance problem], a detailed exposition of the proof, by Terence Tao[http://gilkalai.wordpress.com/2010/11/20/janos-pach-guth-and-katzs-solution-of-erdos-distinct-distances-problem/ Guth and Katz’s Solution of Erdős’s Distinct Distances Problem], a guest post by János Pach on Gil Kalai's blog
The conjecture
In what follows let {{math|g(n)}} denote the minimal number of distinct distances between {{math|n}} points in the plane, or equivalently the smallest possible cardinality of their distance set. In his 1946 paper, Erdős proved the estimates
:
for some constant . The lower bound was given by an easy argument. The upper bound is given by a square grid. For such a grid, there are numbers below n which are sums of two squares, expressed in big O notation; see Landau–Ramanujan constant. Erdős conjectured that the upper bound was closer to the true value of g(n), and specifically that (using big Omega notation) holds for every {{math|c < 1}}.
Partial results
Paul Erdős' 1946 lower bound of {{math|1=g(n) = Ω(n1/2)}} was successively improved to:
- {{math|1=g(n) = Ω(n2/3)}} by Leo Moser in 1952,{{cite journal
| first=Leo | last=Moser | author-link=Leo Moser
| title=On the different distances determined by points
| journal=American Mathematical Monthly
| volume=59
| issue=2
| year=1952
| pages=85–91
| doi=10.2307/2307105
| mr=0046663
| jstor=2307105}}
- {{math|1=g(n) = Ω(n5/7)}} by Fan Chung in 1984,{{cite journal
| first=Fan | last=Chung | author-link=Fan Chung
| title=The number of different distances determined by points in the plane
| journal=Journal of Combinatorial Theory | series=Series A
| volume=36
| issue=3
| year=1984
| pages=342–354
| url=http://www.math.ucsd.edu/~fan/mypaps/fanpap/67distances.pdf
| doi=10.1016/0097-3165(84)90041-4
| doi-access=free
| mr=0744082}}
- {{math|1=g(n) = Ω(n4/5/log n)}} by Fan Chung, Endre Szemerédi, and William T. Trotter in 1992,{{cite journal
| first1=Fan | last1=Chung | authorlink1=Fan Chung
| first2=Endre | last2=Szemerédi | authorlink2=Endre Szemerédi
| first3=William T. | last3=Trotter | authorlink3=William T. Trotter
| title=The number of different distances determined by a set of points in the Euclidean plane
| journal=Discrete & Computational Geometry
| volume=7
| year=1992
| pages=342–354
| url=http://www.math.ucsd.edu/~fan/wp/124distances.pdf
| doi=10.1007/BF02187820
| mr=1134448
| s2cid=10637819| doi-access=free
}}
- {{math|1=g(n) = Ω(n4/5)}} by László A. Székely in 1993,{{cite journal
| first=László A.
| last=Székely
| title=Crossing numbers and hard Erdös problems in discrete geometry
| journal=Combinatorics, Probability and Computing
| volume=11
| issue=3
| year=1993
| pages=1–10
| mr=1464571
| doi=10.1017/S0963548397002976| s2cid=36602807
}}
- {{math|1=g(n) = Ω(n6/7)}} by József Solymosi and Csaba D. Tóth in 2001,{{cite journal
| first1 = József | last1=Solymosi | author-link=József Solymosi
| first2=Csaba D. | last2=Tóth
| title=Distinct Distances in the Plane
| journal=Discrete & Computational Geometry
| volume=25
| issue=4
| year=2001
| pages=629–634
| doi=10.1007/s00454-001-0009-z
| mr=1838423
| doi-access=free}}
- {{math|1=g(n) = Ω(n(4e/(5e − 1)) − ɛ)}} by Gábor Tardos in 2003,{{cite journal
| first=Gábor | last=Tardos | author-link=Gábor Tardos
| title=On distinct sums and distinct distances
| journal=Advances in Mathematics
| volume=180
| issue=1
| year=2003
| pages=275–289
| doi=10.1016/s0001-8708(03)00004-5
| mr=2019225| doi-access=free
}}
- {{math|1=g(n) = Ω(n((48 − 14e)/(55 − 16e)) − ɛ)}} by Nets Katz and Gábor Tardos in 2004,{{cite book
| first1 = Nets Hawk | last1=Katz | authorlink1=Nets Katz
| first2=Gábor | last2=Tardos
| year=2004
| chapter=A new entropy inequality for the Erdős distance problem
| mr=2065258
| title=Towards a theory of geometric graphs
| editor1-first=János | editor1-last=Pach
| publisher=American Mathematical Society
| location=Providence, RI
| isbn=978-0-8218-3484-8
| doi=10.1090/conm/342/06136
| pages=119–126
| series=Contemporary Mathematics
| volume=342}}
Higher dimensions
Erdős also considered the higher-dimensional variant of the problem: for let denote the minimal possible number of distinct distances among points in -dimensional Euclidean space. He proved that and and conjectured that the upper bound is in fact sharp, i.e., . József Solymosi and Van H. Vu obtained the lower bound in 2008.{{cite journal
| first1=József | last1=Solymosi | author-link1=József Solymosi
| first2=Van H. | last2=Vu | author-link2=Van H. Vu
| title= Near optimal bounds for the Erdős distinct distances problem in high dimensions
| journal=Combinatorica
| volume=28
| year=2008
| pages=113–125
| doi=10.1007/s00493-008-2099-1
| mr=2399013
| s2cid=2225458}}
See also
References
{{Reflist}}
External links
- William Gasarch's [http://www.cs.umd.edu/~gasarch/TOPICS/erdos_dist/erdos_dist.html page] on the problem
{{DEFAULTSORT:Erdos distinct distances problem}}