Erdős distinct distances problem

{{Short description|Problem in discrete geometry}}

In discrete geometry, the Erdős distinct distances problem states that every set of points in the plane has a nearly-linear number of distinct distances. It was posed by Paul Erdős in 1946{{cite journal

| first=Paul | last=Erdős | author-link=Paul Erdős

| url=http://www.renyi.hu/~p_erdos/1946-03.pdf

| title=On sets of distances of n points

| journal=American Mathematical Monthly

| volume=53

| issue=5

| year=1946

| pages=248–250

| doi=10.2307/2305092

|jstor=2305092}}{{citation

| first1=Julia | last1=Garibaldi

| first2=Alex | last2=Iosevich

| first3=Steven | last3=Senger

| title=The Erdős Distance Problem

| title-link = The Erdős Distance Problem

| year=2011

| publisher=American Mathematical Society

| place=Providence, RI

| mr=2721878

| isbn=978-0-8218-5281-1

| series=Student Mathematical Library

| volume=56}} and almost proven by Larry Guth and Nets Katz in 2015.{{cite journal

| first1=Larry | last1=Guth | authorlink1=Larry Guth

| first2= Nets Hawk | last2=Katz | authorlink2=Nets Katz

| journal=Annals of Mathematics

| doi=10.4007/annals.2015.181.1.2

| title=On the Erdős distinct distances problem in the plane

| year=2015

| pages=155–190

| volume=181

| issue=1

| zbl=1310.52019

| arxiv=1011.4105

| mr=3272924}}[http://terrytao.wordpress.com/2010/11/20/the-guth-katz-bound-on-the-erdos-distance-problem/ The Guth-Katz bound on the Erdős distance problem], a detailed exposition of the proof, by Terence Tao[http://gilkalai.wordpress.com/2010/11/20/janos-pach-guth-and-katzs-solution-of-erdos-distinct-distances-problem/ Guth and Katz’s Solution of Erdős’s Distinct Distances Problem], a guest post by János Pach on Gil Kalai's blog

The conjecture

In what follows let {{math|g(n)}} denote the minimal number of distinct distances between {{math|n}} points in the plane, or equivalently the smallest possible cardinality of their distance set. In his 1946 paper, Erdős proved the estimates

:\sqrt{n-3/4}-1/2\leq g(n)\leq c n/\sqrt{\log n}

for some constant c. The lower bound was given by an easy argument. The upper bound is given by a \sqrt{n}\times\sqrt{n} square grid. For such a grid, there are O( n/\sqrt{\log n}) numbers below n which are sums of two squares, expressed in big O notation; see Landau–Ramanujan constant. Erdős conjectured that the upper bound was closer to the true value of g(n), and specifically that (using big Omega notation) g(n) = \Omega(n^c) holds for every {{math|c < 1}}.

Partial results

Paul Erdős' 1946 lower bound of {{math|1=g(n) = Ω(n1/2)}} was successively improved to:

  • {{math|1=g(n) = Ω(n2/3)}} by Leo Moser in 1952,{{cite journal

| first=Leo | last=Moser | author-link=Leo Moser

| title=On the different distances determined by n points

| journal=American Mathematical Monthly

| volume=59

| issue=2

| year=1952

| pages=85–91

| doi=10.2307/2307105

| mr=0046663

| jstor=2307105}}

  • {{math|1=g(n) = Ω(n5/7)}} by Fan Chung in 1984,{{cite journal

| first=Fan | last=Chung | author-link=Fan Chung

| title=The number of different distances determined by n points in the plane

| journal=Journal of Combinatorial Theory | series=Series A

| volume=36

| issue=3

| year=1984

| pages=342–354

| url=http://www.math.ucsd.edu/~fan/mypaps/fanpap/67distances.pdf

| doi=10.1016/0097-3165(84)90041-4

| doi-access=free

| mr=0744082}}

| first1=Fan | last1=Chung | authorlink1=Fan Chung

| first2=Endre | last2=Szemerédi | authorlink2=Endre Szemerédi

| first3=William T. | last3=Trotter | authorlink3=William T. Trotter

| title=The number of different distances determined by a set of points in the Euclidean plane

| journal=Discrete & Computational Geometry

| volume=7

| year=1992

| pages=342–354

| url=http://www.math.ucsd.edu/~fan/wp/124distances.pdf

| doi=10.1007/BF02187820

| mr=1134448

| s2cid=10637819| doi-access=free

}}

  • {{math|1=g(n) = Ω(n4/5)}} by László A. Székely in 1993,{{cite journal

| first=László A.

| last=Székely

| title=Crossing numbers and hard Erdös problems in discrete geometry

| journal=Combinatorics, Probability and Computing

| volume=11

| issue=3

| year=1993

| pages=1–10

| mr=1464571

| doi=10.1017/S0963548397002976| s2cid=36602807

}}

  • {{math|1=g(n) = Ω(n6/7)}} by József Solymosi and Csaba D. Tóth in 2001,{{cite journal

| first1 = József | last1=Solymosi | author-link=József Solymosi

| first2=Csaba D. | last2=Tóth

| title=Distinct Distances in the Plane

| journal=Discrete & Computational Geometry

| volume=25

| issue=4

| year=2001

| pages=629–634

| doi=10.1007/s00454-001-0009-z

| mr=1838423

| doi-access=free}}

  • {{math|1=g(n) = Ω(n(4e/(5e − 1)) − ɛ)}} by Gábor Tardos in 2003,{{cite journal

| first=Gábor | last=Tardos | author-link=Gábor Tardos

| title=On distinct sums and distinct distances

| journal=Advances in Mathematics

| volume=180

| issue=1

| year=2003

| pages=275–289

| doi=10.1016/s0001-8708(03)00004-5

| mr=2019225| doi-access=free

}}

  • {{math|1=g(n) = Ω(n((48 − 14e)/(55 − 16e)) − ɛ)}} by Nets Katz and Gábor Tardos in 2004,{{cite book

| first1 = Nets Hawk | last1=Katz | authorlink1=Nets Katz

| first2=Gábor | last2=Tardos

| year=2004

| chapter=A new entropy inequality for the Erdős distance problem

| mr=2065258

| title=Towards a theory of geometric graphs

| editor1-first=János | editor1-last=Pach

| publisher=American Mathematical Society

| location=Providence, RI

| isbn=978-0-8218-3484-8

| doi=10.1090/conm/342/06136

| pages=119–126

| series=Contemporary Mathematics

| volume=342}}

  • {{math|1=g(n) = Ω(n/log n)}} by Larry Guth and Nets Katz in 2015.

Higher dimensions

Erdős also considered the higher-dimensional variant of the problem: for d\ge 3 let g_d(n) denote the minimal possible number of distinct distances among n points in d-dimensional Euclidean space. He proved that g_d(n)=\Omega(n^{1/d}) and g_d(n)=O(n^{2/d}) and conjectured that the upper bound is in fact sharp, i.e., g_d(n)=\Theta(n^{2/d}). József Solymosi and Van H. Vu obtained the lower bound g_d(n)=\Omega(n^{2/d - 2/d(d+2)}) in 2008.{{cite journal

| first1=József | last1=Solymosi | author-link1=József Solymosi

| first2=Van H. | last2=Vu | author-link2=Van H. Vu

| title= Near optimal bounds for the Erdős distinct distances problem in high dimensions

| journal=Combinatorica

| volume=28

| year=2008

| pages=113–125

| doi=10.1007/s00493-008-2099-1

| mr=2399013

| s2cid=2225458}}

See also

References

{{Reflist}}