Erysodienone

{{Chembox

| ImageFile = erysodienone.svg

| ImageSize = 200px

| ImageAlt =

| IUPACName = 16-Hydroxy-3,15-dimethoxy-1,3,4,6-tetradehydroerythrinan-2-one

| SystematicName = (9bS)-7-Hydroxy-8,11-dimethoxy-1,2,4,5-tetrahydro-12H-indolo[7a,1-a]isoquinolin-12-one

| OtherNames =

| Section1 = {{Chembox Identifiers

| CASNo = 5531-67-9

| CASNo_Ref = {{Cascite|changed|CAS}}

| ChemSpiderID = 74174422

| PubChem = 101277375

| SMILES = COC1=C(C=C2CCN3CCC4=CC(=O)C(=C[C@@]43C2=C1)OC)O

| StdInChI=1S/C18H19NO4/c1-22-16-9-13-11(7-14(16)20)3-5-19-6-4-12-8-15(21)17(23-2)10-18(12,13)19/h7-10,20H,3-6H2,1-2H3/t18-/m0/s1

| StdInChIKey = QVVZUVOFOCDCTO-SFHVURJKSA-N

}}

| Section2 = {{Chembox Properties

| C=18|H=19|N=1|O=4

| Appearance =

| Density =

| MeltingPt =

| BoilingPt =

| Solubility =

}}

| Section3 = {{Chembox Hazards

| MainHazards =

| FlashPt =

| AutoignitionPt =

}}

}}

Erysodienone is a key precursor in the biosynthesis of many Erythrina-produced alkaloids.{{cite journal | last1=Rahman | first1=Mohammed Zakiur | last2=J Sultana | first2=Shirin | last3=Faruquee | first3=Chowdhury | last4=Ferdous | first4=Faisol | last5=Rahman | first5=Mohammad | last6=S Islam | first6=Mohammad | last7=Rashid | first7=Mohammad A | title=Phytochemical and Biological investigations of Erythrina variegata | journal=Saudi Pharmaceutical Journal | date=May 2007 | volume=15 | url=http://faculty.ksu.edu.sa/hisham/Documents/SPJ/150207.pdf}} Early work was done by Derek Barton and co-workers to illustrate the biosynthetic pathways towards erythrina alkaloids.{{cite journal | last1=Barton | first1=D. H. R. | last2=Boar | first2=R. B. | last3=Widdowson | first3=D. A. | series=Phenol oxidation and biosynthesis | title=Part XXI: The biosynthesis of the Erythrina alkaloids | journal=Journal of the Chemical Society C: Organic | date=January 1970 | volume=9 | url=http://pubs.rsc.org/-/content/articlepdf/1970/j3/j39700001213 | doi=10.1039/J39700001213 | issn=0022-4952 | issue=9 | pages=1213–1218| pmid=5463829 | url-access=subscription }}{{cite journal | last1=Barton | first1=Derek H. R. | last2=Potter | first2=Christopher J. | last3=Widdowson | first3=David A. | series=Phenol oxidation and biosynthesis | title=Part XXIII: On the benzyltetrahydroisoquinoline origins of the Erythrina alkaloids | journal=Journal of the Chemical Society, Perkin Transactions 1 | date=January 1974 | doi=10.1039/P19740000346 | issn=1364-5463 | pages=346–348}}{{cite journal | last1=Barton | first1=D. H. R. | last2=James | first2=R. | last3=Kirby | first3=G. W. | last4=Turner | first4=D. W. | last5=Widdowson | first5=D. A. | series=Phenol oxidation and biosynthesis | title=Part XVIII: The structure and biosynthesis of Erythrina alkaloids | journal=Journal of the Chemical Society C: Organic | date=January 1968 | volume=12 | url=http://pubs.rsc.org/en/content/articlelanding/1968/j3/j39680001529 | doi=10.1039/J39680001529 | issn=0022-4952 | pages=1529–1537| pmid=5690074 | url-access=subscription }} It was demonstrated that erysodienone could be synthesized from simple starting materials by a similar approach as its biosynthetic pathway, which led to the development of the biomimetic synthesis of erysodienone.{{cite book |last1=Herbert |first1=R. B. |title=The Chemistry and Biology of Isoquinoline Alkaloids |chapter=The Biosynthesis of Isoquinoline Alkaloids |year=1985 |pages=213–228 |issn=0172-6625 |doi=10.1007/978-3-642-70128-3_14|series=Proceedings in Life Sciences |isbn=978-3-642-70130-6 }}

Synthesis

The biosynthesis of erysodienone involves a key step of oxidative phenol coupling. Starting with S-norprotosinomenine precursor A, cyclization via oxidative phenol coupling forms intermediate B, which in turn can be rearranged to form intermediate C. Hydrogenation of C forms the diphenoquinone intermediate E. An intramolecular Michael addition reaction converts E to the final product, erysodienone.{{cite journal |last1=Maier UH | last2=Rödl W | last3=Deus-Neumann B | last4=Zenk MH | title=Biosynthesis of Erythrina alkaloids in Erythrina crista-galli | journal=Phytochemistry | year= 1999 | volume= 52 | issue= 3 | pages= 373–82 | pmid=10501023 | doi= 10.1016/s0031-9422(99)00230-7 }}

:File:Structure of erysodienone and its proposed biosynthetic pathway.png{{clear-left}}

A biomimetic synthesis route for erysodienone was developed based on a similar oxidative phenol coupling mechanism. Barton and co-workers found that treating bisphenolethylamine precursor F with oxidants such as K3Fe(CN)6 initiated oxidative phenol coupling to form the 9-membered ring structure in intermediate D that itself undergo a Michael addition to give erysodienone.{{cite book |last1=M. F. Grundon | title=The Alkaloids |url=https://books.google.com/books?id=Z8dqEXAd3hEC&pg=PA16 |date=1 January 1979 |publisher=Royal Society of Chemistry |isbn=978-0-85186-660-4 |pages=16–}}

:File:Biomimetic synthesis of erysodienone..png{{clear-left}}

References

{{Reflist|2}}

Further reading

  • {{cite book |editor=Arnold Brossi | last1=Castedo | first1=Luis | last2=Dominguez | first2=Domingo | title=The Alkaloids: Chemistry and Pharmacology | chapter=Chapter 4: Dibenzazonine Alkaloids | date=January 1989 | publisher=Academic Press | volume=35 | pages=177–214}}
  • {{cite journal | last1=Chou | first1=Chun Tzer | last2=Swenton | first2=John S. | title=A convergent strategy for synthesis of Erythrina alkaloids | journal=Journal of the American Chemical Society | date=October 1987 | doi=10.1021/ja00256a079 | issn=0002-7863 | volume=109 | issue=22 | pages=6898–6899}}

Category:Indolizidines

Category:Isoquinoline alkaloids

Category:Tetrahydroisoquinoline alkaloids