Essential manifold
In geometry, an essential manifold is a special type of closed manifold. The notion was first introduced explicitly by Mikhail Gromov.{{cite journal |last=Gromov |first=M. |title=Filling Riemannian manifolds |journal=J. Diff. Geom. |volume=18 |date=1983 |pages=1–147 |citeseerx=10.1.1.400.9154}}
Definition
A closed manifold M is called essential if its fundamental class [M] defines a nonzero element in the homology of its fundamental group {{pi}}, or more precisely in the homology of the corresponding Eilenberg–MacLane space K({{pi}}, 1), via the natural homomorphism
:
where n is the dimension of M. Here the fundamental class is taken in homology with integer coefficients if the manifold is orientable, and in coefficients modulo 2, otherwise.
Examples
- All closed surfaces (i.e. 2-dimensional manifolds) are essential with the exception of the 2-sphere S2.
- Real projective space RPn is essential since the inclusion
- :
:is injective in homology, where
::
:is the Eilenberg–MacLane space of the finite cyclic group of order 2.
- All compact aspherical manifolds are essential (since being aspherical means the manifold itself is already a K({{pi}}, 1))
- In particular all compact hyperbolic manifolds are essential.
- All lens spaces are essential.
Properties
- The connected sum of essential manifolds is essential.
- Any manifold which admits a map of nonzero degree to an essential manifold is itself essential.
References
{{Reflist}}
See also
{{Systolic geometry navbox}}
{{Manifolds}}
{{Riemannian geometry}}
{{Riemannian-geometry-stub}}