Estimation of signal parameters via rotational invariance techniques

{{Short description|Signal processing method}}

{{multiple issues|

{{Expert needed|statistics

| date = November 2023

| reason = article reads like an overly detailed proof, and lacks encyclopedic tone. It needs rewriting as per MOS:MATH#TONE

}}

{{Textbook|date=November 2023}}

{{Copy edit|date=October 2023}}}}

File:ESPRIT 2D.gif

Estimation of signal parameters via rotational invariant techniques (ESPRIT), is a technique to determine the parameters of a mixture of sinusoids in background noise. This technique was first proposed for frequency estimation.{{Citation | last1=Paulraj | first1=A. | last2=Roy | first2=R. | last3=Kailath | first3=T. | title=Nineteenth Asilomar Conference on Circuits, Systems and Computers | isbn=978-0-8186-0729-5 | year=1985 | chapter=Estimation Of Signal Parameters Via Rotational Invariance Techniques - Esprit | doi=10.1109/ACSSC.1985.671426 | pages=83–89| s2cid=2293566 }} However, with the introduction of phased-array systems in everyday technology, it is also used for angle of arrival estimations.Volodymyr Vasylyshyn. The direction of arrival estimation using ESPRIT with sparse arrays.// Proc. 2009 European Radar Conference (EuRAD). – 30 Sept.-2 Oct. 2009. - Pp. 246 - 249. - [https://ieeexplore.ieee.org/abstract/document/5307000]

One-dimensional ESPRIT

At instance t

, the M

(complex-valued) output signals (measurements) y_m[t], m = 1, \ldots, M

, of the system are related to the K

(complex-valued) input signals x_k[t]

, k = 1, \ldots, K

, asy_m[t] = \sum_{k=1}^K a_{m,k} x_k[t] + n_m[t],where n_m[t]

denotes the noise added by the system. The one-dimensional form of ESPRIT can be applied if the weights have the form a_{m,k} = e^{-j(m-1)\omega_k}

, whose phases are integer multiples of some radial frequency \omega_k

. This frequency only depends on the index of the system's input, i.e. k

. The goal of ESPRIT is to estimate \omega_k

's, given the outputs y_m[t]

and the number of input signals, K

. Since the radial frequencies are the actual objectives, a_{m,k}

is denoted as a_m(\omega_k)

.

Collating the weights a_m(\omega_k)

as \mathbf a(\omega_k) = [\,1 \,\ e^{-j\omega_k} \,\ e^{-j2\omega_k} \,\ ... \,\ e^{-j(M-1)\omega_k}\,]^\top and the M

output signals at instance t

as \mathbf y[t] = [\,y_1[t]\,\ y_2[t] \,\ ... \,\ y_M[t]\,]^\top, \mathbf y[t] = \sum_{k=1}^K \mathbf a(\omega_k) x_k[t] + \mathbf{n}[t],where \mathbf n[t] = [\,n_1[t]\,\ n_2[t] \,\ ... \,\ n_M[t]\,]^\top. Further, when the weight vectors \mathbf a(\omega_1), \ \mathbf a(\omega_2),\ ..., \ \mathbf a(\omega_K)

are put into a Vandermonde matrix \mathbf A = [\,\mathbf a(\omega_1) \,\ \mathbf a(\omega_2) \,\ ... \,\ \mathbf a(\omega_K)\,], and the K inputs at instance t

into a vector \mathbf x[t] = [\,x_1[t] \,\ ... \,\ x_K[t]\,]^\top, we can write \mathbf y[t] = \mathbf A\, \mathbf x[t]+\mathbf n[t].With several measurements at instances t = 1, 2, \dots, T

and the notations \mathbf{Y} = [\,\mathbf{y}[1] \,\ \mathbf{y}[2] \,\ \dots \,\ \mathbf{y}[ T ]\,], \mathbf{X} = [\,\mathbf{x}[1] \,\ \mathbf{x}[2] \,\ \dots \,\ \mathbf{x}[ T ]\,] and \mathbf{N} = [\, \mathbf{n}[1] \,\ \mathbf{n}[2] \,\ \dots \,\ \mathbf{n}[ T ]\,], the model equation becomes\mathbf{Y} = \mathbf{A} \mathbf{X} + \mathbf{N}.

= Dividing into virtual sub-arrays =

File:Max overlapping subarrays.png

The weight vector \mathbf a(\omega_k)

has the property that adjacent entries are related.[\mathbf{a}(\omega_k)]_{m+1} = e^{-j\omega_k} [\mathbf{a}(\omega_k)]_{m}

For the whole vector \mathbf a(\omega_k)

, the equation introduces two selection matrices \mathbf{J}_1

and \mathbf{J}_2

: \mathbf J_1 = [\mathbf I_{M-1} \quad \mathbf 0] and \mathbf J_2 = [\mathbf 0 \quad \mathbf I_{M-1}]. Here, \mathbf I_{M-1} is an identity matrix of size (M-1) and \mathbf 0 is a vector of zeros.

The vector \mathbf J_1 \mathbf a(\omega_k)

[\mathbf J_2 \mathbf a(\omega_k)]

contains all elements of \mathbf a(\omega_k)

except the last [first] one. Thus, \mathbf J_2 \mathbf a(\omega_k) = e^{-j\omega_k} \mathbf J_1 \mathbf a(\omega_k) and\mathbf J_2 \mathbf A = \mathbf J_1 \mathbf A \mathbf H

,\quad\text{where}\quad

{\mathbf {H}} := \begin{bmatrix} e^{-j\omega_1} & \\ & e^{-j\omega_2} \\ & & \ddots \\ & & & e^{-j\omega_K} \end{bmatrix}

.The above relation is the first major observation required for ESPRIT. The second major observation concerns the signal subspace that can be computed from the output signals.

= Signal subspace =

The singular value decomposition (SVD) of \mathbf Y

is given as\mathbf{Y} = \mathbf U \mathbf \Sigma \mathbf V^\daggerwhere \mathbf U \in\mathbb C^{M\times M}

and \mathbf V \in \mathbb C^{T\times T}

are unitary matrices and \mathbf \Sigma

is a diagonal matrix of size M \times T, that holds the singular values from the largest (top left) in descending order. The operator \dagger

denotes the complex-conjugate transpose (Hermitian transpose).

Let us assume that T \geq M. Notice that we have K input signals. If there was no noise, there would only be K non-zero singular values. We assume that the K largest singular values stem from these input signals and other singular values are presumed to stem from noise. The matrices in the SVD of \mathbf Y can be partitioned into submatrices, where some submatrices correspond to the signal subspace and some correspond to the noise subspace. \begin{aligned}

\mathbf{U} =

\begin{bmatrix}

\mathbf{U}_\mathrm{S} &

\mathbf{U}_\mathrm{N}

\end{bmatrix},

& &

\mathbf{\Sigma} =

\begin{bmatrix}

\mathbf{\Sigma}_\mathrm{S} & \mathbf{0} & \mathbf{0} \\

\mathbf{0} & \mathbf{\Sigma}_\mathrm{N} & \mathbf{0}

\end{bmatrix},

& &

\mathbf{V} =

\begin{bmatrix}

\mathbf{V}_\mathrm{S} &

\mathbf{V}_\mathrm{N} &

\mathbf{V}_\mathrm{0}

\end{bmatrix}

\end{aligned},where \mathbf{U}_\mathrm{S} \in \mathbb{C}^{M \times K}

and \mathbf{V}_\mathrm{S} \in \mathbb{C}^{N \times K}

contain the first K columns of \mathbf U

and \mathbf V

, respectively and \mathbf{\Sigma}_\mathrm{S} \in \mathbb{C}^{K \times K}

is a diagonal matrix comprising the K largest singular values.

Thus, The SVD can be written as \mathbf{Y} = \mathbf U_\mathrm{S} \mathbf \Sigma_\mathrm{S} \mathbf V_\mathrm{S}^\dagger

+ \mathbf U_\mathrm{N} \mathbf \Sigma_\mathrm{N} \mathbf V_\mathrm{N}^\dagger

,where \mathbf{U}_\mathrm{S}

, ⁣\mathbf{V}_\mathrm{S}

, and \mathbf{\Sigma}_\mathrm{S}

represent the contribution of the input signal x_k[t]

to \mathbf Y

. We term \mathbf{U}_\mathrm{S}

the signal subspace. In contrast, \mathbf{U}_\mathrm{N}

, \mathbf{V}_\mathrm{ N }

, and \mathbf{\Sigma}_\mathrm{N}

represent the contribution of noise n_m[ t ]

to \mathbf Y

.

Hence, from the system model, we can write \mathbf{A} \mathbf{X} =

\mathbf U_\mathrm{S} \mathbf \Sigma_\mathrm{S} \mathbf V_\mathrm{S}^\dagger

and \mathbf{N} =

\mathbf U_\mathrm{N} \mathbf\Sigma_\mathrm{N} \mathbf V_\mathrm{N}^\dagger

. Also, from the former, we can write \mathbf U_\mathrm{S}

= \mathbf{A} \mathbf{F},

where {\mathbf F } = \mathbf{X} \mathbf V_\mathrm{S} \mathbf \Sigma_\mathrm{S}^{-1}

. In the sequel, it is only important that there exists such an invertible matrix \mathbf F

and its actual content will not be important.

Note: The signal subspace can also be extracted from the spectral decomposition of the auto-correlation matrix of the measurements, which is estimated as\mathbf{R}_\mathrm{YY}

=

\frac{1}{T}

\sum_{t=1}^T \mathbf{y}[t] \mathbf{y}[t] ^\dagger

=\frac{1}{T}

\mathbf{Y} \mathbf{Y}^\dagger

=

\frac{1}{T}

\mathbf U

{\mathbf \Sigma \mathbf \Sigma^\dagger}

\mathbf U^\dagger

=

\frac{1}{T}

\mathbf U_\mathrm{S} \mathbf \Sigma_\mathrm{S}^2 \mathbf U_\mathrm{S}^\dagger

+

\frac{1}{T}

\mathbf U_\mathrm{N} \mathbf \Sigma_\mathrm{N}^2 \mathbf U_\mathrm{N}^\dagger.

= Estimation of radial frequencies =

We have established two expressions so far: \mathbf J_2 \mathbf A = \mathbf J_1 \mathbf A \mathbf H

and \mathbf U_\mathrm{S} = \mathbf{A} \mathbf{F}

. Now, \begin{aligned}

\mathbf J_2 \mathbf A

= \mathbf J_1 \mathbf A \mathbf H

\implies

\mathbf J_2 (\mathbf U_\mathrm{S} \mathbf{F}^{-1})

= \mathbf J_1 (\mathbf U_\mathrm{S} \mathbf{F}^{-1}) \mathbf H

\implies

\mathbf S_2 = \mathbf S_1 \mathbf{P},

\end{aligned}where \mathbf{S}_1 = \mathbf J_1 \mathbf U_\mathrm{S} and \mathbf{S}_2 = \mathbf J_2 \mathbf U_\mathrm{S} denote the truncated signal sub spaces, and \mathbf{P} = \mathbf{F}^{-1} \mathbf H \mathbf{F}.The above equation has the form of an eigenvalue decomposition, and the phases of the eigenvalues in the diagonal matrix \mathbf H are used to estimate the radial frequencies.

Thus, after solving for \mathbf P in the relation \mathbf S_2 = \mathbf S_1 \mathbf{P}, we would find the eigenvalues \lambda_1,\ \lambda_2,\ \ldots,\ \lambda_K

of \mathbf P, where \lambda_k = \alpha_k \mathrm{e}^{j \omega_k}, and the radial frequencies \omega_1,\ \omega_2,\ \ldots,\ \omega_K

are estimated as the phases (argument) of the eigenvalues.

Remark: In general, \mathbf S_1 is not invertible. One can use the least squares estimate {\mathbf P} = (\mathbf S_1^\dagger {\mathbf S_1})^{-1} \mathbf S_1^\dagger {\mathbf S_2}. An alternative would be the total least squares estimate.

= Algorithm summary =

Input: Measurements \mathbf{Y} := [\,\mathbf{y}[1] \,\ \mathbf{y}[2] \,\ \dots \,\ \mathbf{y}[ T ]\,]

, the number of input signals K

(estimate if not already known).

  1. Compute the singular value decomposition (SVD) of \mathbf{Y} = \mathbf U \mathbf \Sigma \mathbf V^\dagger and extract the signal subspace \mathbf{U}_\mathrm{S} \in \mathbb{C}^{M \times K}

as the first K columns of \mathbf U .

  1. Compute \mathbf{S}_1 = \mathbf J_1 \mathbf U_\mathrm{S} and \mathbf{S}_2 = \mathbf J_2 \mathbf U_\mathrm{S}

, where \mathbf J_1 = [\mathbf I_{M-1} \quad \mathbf 0] and \mathbf J_2 = [\mathbf 0 \quad \mathbf I_{M-1}] .

  1. Solve for \mathbf{P}

in \mathbf S_2 = \mathbf S_1 \mathbf{P}

(see the remark above).

  1. Compute the eigenvalues \lambda_1, \lambda_2, \ldots, \lambda_K

of \mathbf{P}

.

  1. The phases of the eigenvalues \lambda_k = \alpha_k \mathrm{e}^{j \omega_k}

provide the radial frequencies \omega_k

, i.e., \omega_k = \arg \lambda_k

.

= Notes =

== Choice of selection matrices ==

In the derivation above, the selection matrices \mathbf J_1 = [\mathbf I_{M-1} \quad \mathbf 0] and \mathbf J_2 = [\mathbf 0 \quad \mathbf I_{M-1}] were used. However, any appropriate matrices \mathbf J_1 and \mathbf{J}_2 may be used as long as the rotational invariance ( i.e., \mathbf J_2 \mathbf a(\omega_k) = e^{-j\omega_k} \mathbf J_1 \mathbf a(\omega_k) ) , or some generalization of it (see below) holds; accordingly, the matrices \mathbf J_1 \mathbf A and \mathbf J_2 \mathbf A may contain any rows of \mathbf A .

== Generalized rotational invariance ==

The rotational invariance used in the derivation may be generalized. So far, the matrix \mathbf H has been defined to be a diagonal matrix that stores the sought-after complex exponentials on its main diagonal. However, \mathbf H may also exhibit some other structure.{{Cite journal |last1=Hu |first1=Anzhong |last2=Lv |first2=Tiejun |last3=Gao |first3=Hui |last4=Zhang |first4=Zhang |last5=Yang |first5=Shaoshi |date=2014 |title=An ESPRIT-Based Approach for 2-D Localization of Incoherently Distributed Sources in Massive MIMO Systems |url=https://ieeexplore.ieee.org/document/6777542 |journal=IEEE Journal of Selected Topics in Signal Processing |volume=8 |issue=5 |pages=996–1011 |doi=10.1109/JSTSP.2014.2313409 |arxiv=1403.5352 |bibcode=2014ISTSP...8..996H |s2cid=11664051 |issn=1932-4553}} For instance, it may be an upper triangular matrix. In this case, \mathbf{P} = \mathbf{F}^{-1} \mathbf H \mathbf{F}constitutes a triangularization of \mathbf P.

See also

References

{{reflist}}

Further reading

  • {{Citation | last1=Paulraj | first1=A. | last2=Roy | first2=R. | last3=Kailath | first3=T. | title=Nineteenth Asilomar Conference on Circuits, Systems and Computers | isbn=978-0-8186-0729-5 | year=1985 | chapter=Estimation Of Signal Parameters Via Rotational Invariance Techniques - Esprit | doi=10.1109/ACSSC.1985.671426 | pages=83–89| s2cid=2293566 }}.
  • {{Cite journal | last1=Roy | first1=R. | last2=Kailath | first2=T. | title=Esprit - Estimation Of Signal Parameters Via Rotational Invariance Techniques | year=1989 | journal=IEEE Transactions on Acoustics, Speech, and Signal Processing | url=http://www.vtvt.ece.vt.edu/research/references/uwb/ranging_mobile_location/esprit.pdf | volume=37 | issue=7 | pages=984–995 | doi=10.1109/29.32276 | s2cid=14254482 | access-date=2011-07-25 | archive-date=2020-09-26 | archive-url=https://web.archive.org/web/20200926212409/https://www.vtvt.ece.vt.edu/research/references/uwb/ranging_mobile_location/esprit.pdf | url-status=dead }}.
  • {{cite journal|first1=A. M.|last1= Ibrahim|first2= M. I.|last2= Marei|first3= S. F.|last3= Mekhamer|first4= M. M.|last4= Mansour | journal=Electric Power Components and Systems

|volume= 39| issue= 1|year= 2011

|title=An Artificial Neural Network Based Protection Approach Using Total Least Square Estimation of Signal Parameters via the Rotational Invariance Technique for Flexible AC Transmission System Compensated Transmission Lines|doi= 10.1080/15325008.2010.513363 |pages= 64–79|s2cid= 109581436}}

  • Haardt, M., Zoltowski, M. D., Mathews, C. P., & Nossek, J. (1995, May). 2D unitary ESPRIT for efficient 2D parameter estimation. In icassp (pp. 2096-2099). IEEE.

Category:Signal estimation

Category:Trigonometry

Category:Wave mechanics