Euler's sum of powers conjecture#Counterexamples

{{short description|Disproved conjecture in number theory}}

In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem. It was proposed by Leonhard Euler in 1769. It states that for all integers {{mvar|n}} and {{mvar|k}} greater than 1, if the sum of {{mvar|n}} many {{mvar|k}}th powers of positive integers is itself a {{mvar|k}}th power, then {{mvar|n}} is greater than or equal to {{mvar|k}}:

a_1^k + a_2^k + \dots + a_n^k = b^k \implies n \ge k

The conjecture represents an attempt to generalize Fermat's Last Theorem, which is the special case {{math|n {{=}} 2}}: if a_1^k + a_2^k = b^k, then {{math|2 ≥ k}}.

Although the conjecture holds for the case {{math|k {{=}} 3}} (which follows from Fermat's Last Theorem for the third powers), it was disproved for {{math|k {{=}} 4}} and {{math|k {{=}} 5}}. It is unknown whether the conjecture fails or holds for any value {{math|k ≥ 6}}.

Background

Euler was aware of the equality {{nowrap|59{{sup|4}} + 158{{sup|4}} {{=}} 133{{sup|4}} + 134{{sup|4}}}} involving sums of four fourth powers; this, however, is not a counterexample because no term is isolated on one side of the equation. He also provided a complete solution to the four cubes problem as in Plato's number {{nowrap|3{{sup|3}} + 4{{sup|3}} + 5{{sup|3}} {{=}} 6{{sup|3}}}} or the taxicab number 1729.{{cite book |editor-last=Dunham |editor-first=William |year=2007 |title=The Genius of Euler: Reflections on His Life and Work |publisher=The MAA |isbn=978-0-88385-558-4 |page=220 |url=https://books.google.com/books?id=M4-zUnrSxNoC&pg=PA220}}{{cite web |last=Titus, III |first=Piezas |year=2005 |title=Euler's Extended Conjecture |url=http://www.oocities.org/titus_piezas/Equalsums.htm }} The general solution of the equation x_1^3+x_2^3=x_3^3+x_4^3

is

\begin{align}

x_1 &=\lambda( 1-(a-3b)(a^2+3b^2)) \\[2pt]

x_2 &=\lambda( (a+3b)(a^2+3b^2)-1 )\\[2pt]

x_3 &=\lambda( (a+3b)-(a^2+3b^2)^2 )\\[2pt]

x_4 &= \lambda( (a^2+3b^2)^2-(a-3b))

\end{align}

where {{mvar|a}}, {{mvar|b}} and {\lambda} are any rational numbers.

Counterexamples

Euler's conjecture was disproven by L. J. Lander and T. R. Parkin in 1966 when, through a direct computer search on a CDC 6600, they found a counterexample for {{math|k {{=}} 5}}.{{cite journal |last1=Lander |first1=L. J. |last2=Parkin |first2=T. R. |year=1966 |title=Counterexample to Euler's conjecture on sums of like powers |journal=Bull. Amer. Math. Soc. |doi=10.1090/S0002-9904-1966-11654-3 |volume=72 |issue=6 |page=1079|doi-access=free }} This was published in a paper comprising just two sentences. A total of three primitive (that is, in which the summands do not all have a common factor) counterexamples are known:

\begin{align}

144^5 &= 27^5 + 84^5 + 110^5 + 133^5 \\

14132^5 &= (-220)^5 + 5027^5 + 6237^5 + 14068^5 \\

85359^5 &= 55^5 + 3183^5 + 28969^5 + 85282^5

\end{align}

(Lander & Parkin, 1966); (Scher & Seidl, 1996); (Frye, 2004).

In 1988, Noam Elkies published a method to construct an infinite sequence of counterexamples for the {{math|k {{=}} 4}} case.{{cite journal |last=Elkies |first=Noam |authorlink=Noam Elkies |year=1988 |title=On A4 + B4 + C4 = D4 |journal=Mathematics of Computation |doi=10.1090/S0025-5718-1988-0930224-9 |mr=0930224 |jstor=2008781 |volume=51 |issue=184 |pages=825–835 |url=https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0930224-9/S0025-5718-1988-0930224-9.pdf |doi-access=free }} His smallest counterexample was

20615673^4 = 2682440^4 + 15365639^4 + 18796760^4.

A particular case of Elkies' solutions can be reduced to the identity{{cite web |title=Elkies' a4+b4+c4 = d4 |url=https://groups.google.com/group/sci.math/browse_thread/thread/15beef75eaddcb1b?hl=en#}}{{cite book|year = 2010|chapter = Sums of Three Fourth Powers (Part 1)|title = A Collection of Algebraic Identities|first = Tito|last = Piezas III|chapter-url = http://sites.google.com/site/tpiezas/014|access-date = April 11, 2022}}

(85v^2 + 484v - 313)^4 + (68v^2 - 586v + 10)^4 + (2u)^4 = (357v^2 - 204v + 363)^4,

where

u^2 = 22030 + 28849v - 56158v^2 + 36941v^3 - 31790v^4.

This is an elliptic curve with a rational point at {{math|v1 {{=}} −{{sfrac|31|467}}}}. From this initial rational point, one can compute an infinite collection of others. Substituting {{math|v1}} into the identity and removing common factors gives the numerical example cited above.

In 1988, Roger Frye found the smallest possible counterexample

95800^4 + 217519^4 + 414560^4 = 422481^4

for {{math|k {{=}} 4}} by a direct computer search using techniques suggested by Elkies. This solution is the only one with values of the variables below 1,000,000.{{citation

| last = Frye | first = Roger E.

| year = 1988

| title = Proceedings of Supercomputing 88, Vol.II: Science and Applications

| contribution = Finding 958004 + 2175194 + 4145604 = 4224814 on the Connection Machine

| doi = 10.1109/SUPERC.1988.74138

| pages = 106–116| s2cid = 58501120

}}

Generalizations

File:Plato_number.svg

{{main article|Lander, Parkin, and Selfridge conjecture}}

In 1967, L. J. Lander, T. R. Parkin, and John Selfridge conjectured{{cite journal |last1=Lander |first1=L. J. |last2=Parkin |first2=T. R. |last3=Selfridge |first3=J. L. |year=1967 |title=A Survey of Equal Sums of Like Powers |journal=Mathematics of Computation |doi=10.1090/S0025-5718-1967-0222008-0 |jstor=2003249 |volume=21 |issue=99 |pages=446–459 |doi-access=free }} that if

:\sum_{i=1}^{n} a_i^k = \sum_{j=1}^{m} b_j^k,

where {{math|aibj}} are positive integers for all {{math|1 ≤ in}} and {{math|1 ≤ jm}}, then {{math|m + nk}}. In the special case {{math|m {{=}} 1}}, the conjecture states that if

:\sum_{i=1}^{n} a_i^k = b^k

(under the conditions given above) then {{math|nk − 1}}.

The special case may be described as the problem of giving a partition of a perfect power into few like powers. For {{math|k {{=}} 4, 5, 7, 8}} and {{math|n {{=}} k}} or {{math|k − 1}}, there are many known solutions. Some of these are listed below.

See {{OEIS2C|A347773}} for more data.

={{math|''k'' {{=}} 3}}=

3^3 + 4^3 + 5^3 = 6^3 (Plato's number 216)

This is the case {{math|1=a = 1}}, {{math|1=b = 0}} of Srinivasa Ramanujan's formula{{cite web| url = http://mathworld.wolfram.com/DiophantineEquation3rdPowers.html| title = MathWorld : Diophantine Equation--3rd Powers}}

(3a^2+5ab-5b^2)^3 + (4a^2-4ab+6b^2)^3 + (5a^2-5ab-3b^2)^3 = (6a^2-4ab+4b^2)^3

A cube as the sum of three cubes can also be parameterized in one of two ways:

\begin{align}

a^3(a^3+b^3)^3 &= b^3(a^3+b^3)^3+a^3(a^3-2b^3)^3+b^3(2a^3-b^3)^3 \\[6pt]

a^3(a^3+2b^3)^3 &= a^3(a^3-b^3)^3+b^3(a^3-b^3)^3+b^3(2a^3+b^3)^3.

\end{align}

The number 2,100,0003 can be expressed as the sum of three positive cubes in nine different ways.

={{math|''k'' {{=}} 4}}=

\begin{align}

422481^4 &= 95800^4 + 217519^4 + 414560^4 \\[4pt]

353^4 &= 30^4 + 120^4 + 272^4 + 315^4

\end{align}

(R. Frye, 1988); (R. Norrie, smallest, 1911).

={{math|''k'' {{=}} 5}}=

\begin{align}

144^5 &= 27^5 + 84^5 + 110^5 + 133^5 \\[2pt]

72^5 &= 19^5 + 43^5 + 46^5 + 47^5 + 67^5 \\[2pt]

94^5 &= 21^5 + 23^5 + 37^5 + 79^5 + 84^5 \\[2pt]

107^5 &= 7^5 + 43^5 + 57^5 + 80^5 + 100^5

\end{align}

(Lander & Parkin, 1966);{{cite web |url=https://www.youtube.com/watch?v=AO-W5aEJ3Wg | archive-url=https://ghostarchive.org/varchive/youtube/20211211/AO-W5aEJ3Wg| archive-date=2021-12-11 | url-status=live|title=Euler's and Fermat's last theorems, the Simpsons and CDC6600 |author=Burkard Polster |website=YouTube |date=March 24, 2018 |author-link=Burkard Polster |type=video |access-date=2018-03-24}}{{cbignore}}{{cite web| url = https://mathworld.wolfram.com/DiophantineEquation5thPowers.html| title = MathWorld: Diophantine Equation--5th Powers}}{{cite web| url = https://pat7.com/jp/s515-10007-t| title = A Table of Fifth Powers equal to Sums of Five Fifth Powers}} (Lander, Parkin, Selfridge, smallest, 1967); (Lander, Parkin, Selfridge, second smallest, 1967); (Sastry, 1934, third smallest).

={{math|''k'' {{=}} 6}}=

It has been known since 2002 that there are no solutions for {{math|1=k = 6}} whose final term is ≤ 730000.Giovanni Resta and Jean-Charles Meyrignac (2002). [https://www.ams.org/journals/mcom/2003-72-242/S0025-5718-02-01445-X/S0025-5718-02-01445-X.pdf The Smallest Solutions to the Diophantine Equation a^6+b^6+c^6+d^6+e^6=x^6+y^6], Mathematics of Computation, v. 72, p. 1054 (See further work section).

={{math|''k'' {{=}} 7}}=

568^7 = 127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7

(M. Dodrill, 1999).{{cite web| url = https://mathworld.wolfram.com/DiophantineEquation7thPowers.html| title = MathWorld: Diophantine Equation--7th Powers}}

={{math|''k'' {{=}} 8}}=

1409^8 = 90^8 + 223^8 + 478^8 + 524^8 + 748^8 + 1088^8 + 1190^8 + 1324^8

(S. Chase, 2000).{{cite web| url = https://mathworld.wolfram.com/DiophantineEquation8thPowers.html| title = MathWorld: Diophantine Equation--8th Powers}}

See also

References

{{reflist}}