Euler function

{{Short description|Mathematical function}}

File:Euler function.png plot of ϕ on the complex plane]]

{{other uses|List of topics named after Leonhard Euler}}{{Distinguish|Euler's totient function}}{{No footnotes|date=July 2018}}

In mathematics, the Euler function is given by

:\phi(q)=\prod_{k=1}^\infty (1-q^k),\quad |q|<1.

Named after Leonhard Euler, it is a model example of a q-series and provides the prototypical example of a relation between combinatorics and complex analysis.

Properties

The coefficient p(k) in the formal power series expansion for 1/\phi(q) gives the number of partitions of k. That is,

:\frac{1}{\phi(q)}=\sum_{k=0}^\infty p(k) q^k

where p is the partition function.

The Euler identity, also known as the Pentagonal number theorem, is

:\phi(q)=\sum_{n=-\infty}^\infty (-1)^n q^{(3n^2-n)/2}.

(3n^2-n)/2 is a pentagonal number.

The Euler function is related to the Dedekind eta function as

:\phi (e^{2\pi i\tau})= e^{-\pi i\tau/12} \eta(\tau).

The Euler function may be expressed as a q-Pochhammer symbol:

:\phi(q) = (q;q)_{\infty}.

The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding

:\ln(\phi(q)) = -\sum_{n=1}^\infty\frac{1}{n}\,\frac{q^n}{1-q^n},

which is a Lambert series with coefficients -1/n. The logarithm of the Euler function may therefore be expressed as

:\ln(\phi(q)) = \sum_{n=1}^\infty b_n q^n

where b_n=-\sum_{d|n}\frac{1}{d}= -[1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, 15/8, 13/9, 18/10, ...] (see OEIS [http://oeis.org/A000203/table A000203])

On account of the identity \sigma(n) = \sum_{d|n} d = \sum_{d|n} \frac{n}{d} , where \sigma(n) is the sum-of-divisors function, this may also be written as

:\ln(\phi(q)) = -\sum_{n=1}^\infty \frac{\sigma(n)}{n}\ q^n.

Also if a,b\in\mathbb{R}^+ and ab=\pi ^2, thenBerndt, B. et al. "The Rogers–Ramanujan Continued Fraction"

:a^{1/4}e^{-a/12}\phi (e^{-2a})=b^{1/4}e^{-b/12}\phi (e^{-2b}).

Special values

The next identities come from Ramanujan's Notebooks:{{Cite book |last1=Berndt |first1=Bruce C. |title=Ramanujan's Notebooks Part V |publisher=Springer |year=1998 |isbn=978-1-4612-7221-2}} p. 326

: \phi(e^{-\pi})=\frac{e^{\pi/24}\Gamma\left(\frac14\right)}{2^{7/8}\pi^{3/4}}

: \phi(e^{-2\pi})=\frac{e^{\pi/12}\Gamma\left(\frac14\right)}{2\pi^{3/4}}

: \phi(e^{-4\pi})=\frac{e^{\pi/6}\Gamma\left(\frac14\right)}{2^{{11}/8}\pi^{3/4}}

: \phi(e^{-8\pi})=\frac{e^{\pi/3}\Gamma\left(\frac14\right)}{2^{29/16}\pi^{3/4}}(\sqrt{2}-1)^{1/4}

Using the Pentagonal number theorem, exchanging sum and integral, and then invoking complex-analytic methods, one derives{{Cite OEIS|A258232}}

: \int_0^1\phi(q)\,\mathrm{d}q = \frac{8 \sqrt{\frac{3}{23}} \pi \sinh \left(\frac{\sqrt{23} \pi }{6}\right)}{2 \cosh \left(\frac{\sqrt{23} \pi }{3}\right)-1}.

References

{{reflist}}

  • {{Apostol IANT}}

{{Leonhard Euler}}

Category:Number theory

Category:Q-analogs

Category:Leonhard Euler