Euler numbers
{{Use American English|date = March 2019}}
{{short description|Integers occurring in the coefficients of the Taylor series of 1/cosh t}}
{{confused|Eulerian number|Euler's number}}
{{other uses|List of things named after Leonhard Euler#Numbers}}
In mathematics, the Euler numbers are a sequence En of integers {{OEIS|A122045}} defined by the Taylor series expansion
:,
where is the hyperbolic cosine function. The Euler numbers are related to a special value of the Euler polynomials, namely:
:
The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics, specifically when counting the number of alternating permutations of a set with an even number of elements.
Examples
The odd-indexed Euler numbers are all zero. The even-indexed ones {{OEIS|id=A028296}} have alternating signs. Some values are:
:
E0 | = | align=right| 1 |
E2 | = | align=right| −1 |
E4 | = | align=right| 5 |
E6 | = | align=right| −61 |
E8 | = | align=right| {{val|1385|fmt=gaps}} |
E10 | = | align=right| {{val|−50521}} |
E12 | = | align=right| {{val|2,702,765}} |
E14 | = | align=right| {{val|−199,360,981}} |
E16 | = | align=right| {{val|19,391,512,145}} |
E18 | = | align=right| {{val|−2,404,879,675,441}} |
Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, or change all signs to positive {{OEIS|id=A000364}}. This article adheres to the convention adopted above.
Explicit formulas
= In terms of Stirling numbers of the second kind =
The following two formulas express the Euler numbers in terms of Stirling numbers of the second kind:{{cite journal | first1=Sumit Kumar | last1= Jha | title=A new explicit formula for Bernoulli numbers involving the Euler number | journal=Moscow Journal of Combinatorics and Number Theory | volume=8 | issue=4 | pages=385–387 | year=2019 | url= https://projecteuclid.org/euclid.moscow/1572314455| doi= 10.2140/moscow.2019.8.389 | s2cid= 209973489 }}{{cite web |url=https://osf.io/smw7h/ |title=A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind |last=Jha |first=Sumit Kumar |date= 15 November 2019}}
:
:
where denotes the Stirling numbers of the second kind, and denotes the rising factorial.
= As a recursion =
The Euler numbers can be defined as an recursion:
or alternatively:
Both of these recursions can be found by using the fact that.
=As a double sum=
The following two formulas express the Euler numbers as double sums{{cite journal | first1=Chun-Fu | last1= Wei | first2=Feng | last2=Qi | title=Several closed expressions for the Euler numbers | journal=Journal of Inequalities and Applications | volume=219 | issue=2015| year=2015 | doi= 10.1186/s13660-015-0738-9 | doi-access=free }}
:
:
=As an iterated sum=
An explicit formula for Euler numbers is:{{cite web |url=https://oeis.org/A000111/a000111.pdf |archive-url=https://web.archive.org/web/20140409060145/http://oeis.org/A000111/a000111.pdf |archive-date=2014-04-09 |url-status=live |title=An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series |last=Tang |first=Ross |date= 2012-05-11}}
:
where {{mvar|i}} denotes the imaginary unit with {{math|i2 {{=}} −1}}.
=As a sum over partitions=
The Euler number {{math|E2n}} can be expressed as a sum over the even partitions of {{math|2n}},{{cite journal | first1=David C. | last1= Vella | title=Explicit Formulas for Bernoulli and Euler Numbers | journal=Integers | volume=8 | issue=1 | pages=A1 | year=2008 | url= http://www.integers-ejcnt.org/vol8.html}}
:
\delta_{n,\sum mk_m} \left( -\frac{1}{2!} \right)^{k_1} \left( -\frac{1}{4!} \right)^{k_2}
\cdots \left( -\frac{1}{(2n)!} \right)^{k_n} ,
as well as a sum over the odd partitions of {{math|2n − 1}},{{cite arXiv | eprint=1103.1585 | first1= J. | last1=Malenfant | title=Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers| class= math.NT | year= 2011 }}
:
\binom K {k_1, \ldots , k_n}
\delta_{2n-1,\sum (2m-1)k_m } \left( -\frac{1}{1!} \right)^{k_1} \left( \frac{1}{3!} \right)^{k_2}
\cdots \left( \frac{(-1)^n}{(2n-1)!} \right)^{k_n} ,
where in both cases {{math|K {{=}} k1 + ··· + kn}} and
:
\equiv \frac{ K!}{k_1! \cdots k_n!}
is a multinomial coefficient. The Kronecker deltas in the above formulas restrict the sums over the {{mvar|k}}s to {{math|2k1 + 4k2 + ··· + 2nkn {{=}} 2n}} and to {{math|k1 + 3k2 + ··· + (2n − 1)kn {{=}} 2n − 1}}, respectively.
As an example,
:
\begin{align}
E_{10} & = 10! \left( - \frac{1}{10!} + \frac{2}{2!\,8!} + \frac{2}{4!\,6!}
- \frac{3}{2!^2\, 6!}- \frac{3}{2!\,4!^2} +\frac{4}{2!^3\, 4!} - \frac{1}{2!^5}\right) \\[6pt]
& = 9! \left( - \frac{1}{9!} + \frac{3}{1!^2\,7!} + \frac{6}{1!\,3!\,5!}
+\frac{1}{3!^3}- \frac{5}{1!^4\,5!} -\frac{10}{1!^3\,3!^2} + \frac{7}{1!^6\, 3!} - \frac{1}{1!^9}\right) \\[6pt]
& = -50\,521.
\end{align}
=As a determinant=
{{math|E2n}} is given by the determinant
:
\begin{align}
E_{2n} &=(-1)^n (2n)!~ \begin{vmatrix} \frac{1}{2!}& 1 &~& ~&~\\
\frac{1}{4!}& \frac{1}{2!} & 1 &~&~\\
\vdots & ~ & \ddots~~ &\ddots~~ & ~\\
\frac{1}{(2n-2)!}& \frac{1}{(2n-4)!}& ~&\frac{1}{2!} & 1\\
\frac{1}{(2n)!}&\frac{1}{(2n-2)!}& \cdots & \frac{1}{4!} & \frac{1}{2!}\end{vmatrix}.
\end{align}
=As an integral=
{{math|E2n}} is also given by the following integrals:
:
\begin{align}
(-1)^n E_{2n} & = \int_0^\infty \frac{t^{2n}}{\cosh\frac{\pi t}2}\; dt =\left(\frac2\pi\right)^{2n+1} \int_0^\infty \frac{x^{2n}}{\cosh x}\; dx\\[8pt]
&=\left(\frac2\pi\right)^{2n} \int_0^1\log^{2n}\left(\tan \frac{\pi t}{4} \right)\,dt =\left(\frac2\pi\right)^{2n+1}\int_0^{\pi/2} \log^{2n}\left(\tan \frac{x}{2} \right)\,dx\\[8pt]
&= \frac{2^{2n+3}}{\pi^{2n+2}} \int_0^{\pi/2} x \log^{2n} (\tan x)\,dx = \left(\frac2\pi\right)^{2n+2} \int_0^\pi \frac{x}{2} \log^{2n} \left(\tan \frac{x}{2} \right)\,dx.\end{align}
Congruences
W. Zhang{{cite journal | first1=W.P.| last1= Zhang | title=Some identities involving the Euler and the central factorial numbers | journal=Fibonacci Quarterly | volume=36 | issue=4 | pages=154–157 | year=1998 | doi= 10.1080/00150517.1998.12428950 | url= https://www.mathstat.dal.ca/FQ/Scanned/36-2/zhang.pdf |archive-url=https://web.archive.org/web/20191123004402/https://www.mathstat.dal.ca/FQ/Scanned/36-2/zhang.pdf |archive-date=2019-11-23 |url-status=live}} obtained the following combinational identities concerning the Euler numbers. For any prime , we have
:
(-1)^{\frac{p-1}{2}} E_{p-1} \equiv \textstyle\begin{cases} \phantom{-} 0 \mod p &\text{if }p\equiv 1\bmod 4; \\ -2 \mod p & \text{if }p\equiv 3\bmod 4. \end{cases}
proved that, for any prime and integer , we have
:
where is the Euler's totient function.
Lower bound
The Euler numbers grow quite rapidly for large indices, as they have the lower bound
:
Euler zigzag numbers
The Taylor series of is
:
where {{mvar|An}} is the Euler zigzag numbers, beginning with
:1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, ... {{OEIS|id=A000111}}
For all even {{mvar|n}},
:
where {{mvar|En}} is the Euler number, and for all odd {{mvar|n}},
:
where {{mvar|Bn}} is the Bernoulli number.
For every n,
:{{cn|date=September 2016}}
See also
References
{{Reflist}}
External links
- {{springer|title=Euler numbers|id=p/e036540}}
- {{MathWorld|urlname=EulerNumber|title=Euler number}}
{{Classes of natural numbers}}
{{Leonhard Euler}}
{{DEFAULTSORT:Euler Number}}