Eulerian number#Basic properties

{{distinguish|Euler number|Euler's number}}

{{Use American English|date = March 2019}}

{{Short description|Polynomial sequence}}

In combinatorics, the Eulerian number A(n,k) is the number of permutations of the numbers 1 to n in which exactly k elements are greater than the previous element (permutations with k "ascents").

Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis.

Image:EulerianPolynomialsByEuler1755.png

Other notations for A(n,k) are E(n,k) and \textstyle \left\langle {n \atop k} \right\rangle.

Definition

The Eulerian polynomials A_n(t) are defined by the exponential generating function

:\sum_{n=0}^{\infty} A_{n}(t) \,\frac{x^n}{n!} = \frac{t-1}{t - e^{(t-1)\,x}} = \left(1-\frac{e^{(t-1)x}-1}{t-1}\right)^{-1}.

The Eulerian numbers A(n,k) may be defined as the coefficients of the Eulerian polynomials:

:A_{n}(t) = \sum_{k=0}^n A(n,k)\,t^k.

An explicit formula for A(n,k) is(L. Comtet 1974, p. 243)

:File:EulerianNumberPlot.svgA(n,k)=\sum_{i=0}^{k}(-1)^i \binom{n+1}{i} (k+1-i)^n.

==Basic properties==

  • For fixed n there is a single permutation which has 0 ascents: (n, n-1, n-2, \ldots, 1). Indeed, as {\tbinom n 0}=1 for all n, A(n, 0) = 1. This formally includes the empty collection of numbers, n=0. And so A_0(t)=A_1(t)=1.
  • For k=1 the explicit formula implies A(n,1)=2^n-(n+1), a sequence in n that reads 0, 0, 1, 4, 11, 26, 57, \dots.
  • Fully reversing a permutation with k ascents creates another permutation in which there are n-k-1 ascents. Therefore A(n, k) = A(n, n-k-1). So there is also a single permutation which has n-1 ascents, namely the rising permutation (1, 2, \ldots, n). So also A(n, n-1) equals 1.
  • A lavish upper bound is A(n, k) \le (k+1)^n\cdot(n+2)^k. Between the bounds just discussed, the value exceeds 1.
  • For k\ge n > 0, the values are formally zero, meaning many sums over k can be written with an upper index only up to n-1. It also means that the polynomials A_{n}(t) are really of degree n-1 for n>0.

A tabulation of the numbers in a triangular array is called the Euler triangle or Euler's triangle. It shares some common characteristics with Pascal's triangle. Values of A(n, k) {{OEIS|id=A008292}} for 0 \le n \le 9 are:

:

class="wikitable" style="text-align:right;"
{{diagonal split header|n | k}}

! width="50" | 0

! width="50" | 1

! width="50" | 2

! width="50" | 3

! width="50" | 4

! width="50" | 5

! width="50" | 6

! width="50" | 7

! width="50" | 8

0

| 1 || || || || || || || ||

1

| 1 || || || || || || || ||

2

| 1 || 1 || || || || || || ||

3

| 1 || 4 || 1 || || || || || ||

4

| 1 || 11 || 11 || 1 || || || || ||

5

| 1 || 26 || 66 || 26 || 1 || || || ||

6

| 1 || 57 || 302 || 302 || 57 || 1 || || ||

7

| 1 || 120 || 1191 || 2416 || 1191 || 120 || 1 || ||

8

| 1 || 247 || 4293 || 15619 || 15619 || 4293 || 247 || 1 ||

9

| 1 || 502 || 14608 || 88234 || 156190 || 88234 || 14608 || 502 || 1

Computation

For larger values of n, A(n,k) can also be calculated using the recursive formula{{cite book |last1=Comtet |first1=Louis |title=Advanced Combinatorics |page=51 |url=https://ia801306.us.archive.org/27/items/Comtet_Louis_-_Advanced_Coatorics/Comtet_Louis_-_Advanced_Combinatorics.pdf}}

:A(n,k)=(n-k)\,A(n-1,k-1) + (k+1)\,A(n-1,k).

This formula can be motivated from the combinatorial definition and thus serves as a natural starting point for the theory.

For small values of n and k, the values of A(n,k) can be calculated by hand. For example

:

class="wikitable"
n

! k

! Permutations

! A(n, k)

1

| 0

| (1)

| A(1,0) = 1

rowspan="2" | 2

| 0

| (2, 1)

| A(2,0) = 1

1

| (1, 2)

| A(2,1) = 1

rowspan="3" | 3

| 0

| (3, 2, 1)

| A(3,0) = 1

1

| (1, 3, 2), (2, 1, 3), (2, 3, 1) and (3, 1, 2)

| A(3,1) = 4

2

| (1, 2, 3)

| A(3,2) = 1

Applying the recurrence to one example, we may find

:A(4,1)=(4-1)\,A(3,0) + (1+1)\,A(3,1)=3 \cdot 1 + 2 \cdot 4 = 11.

Likewise, the Eulerian polynomials can be computed by the recurrence

:A_{0}(t) = 1,

:A_{n}(t) = A_{n-1}'(t)\cdot t\,(1-t) + A_{n-1}(t)\cdot (1+(n-1)\,t),\text{ for } n > 1.

The second formula can be cast into an inductive form,

:A_{n}(t) = \sum_{k=0}^{n-1} \binom{n}{k} A_{k}(t)\cdot (t-1)^{n-1-k}, \text{ for } n > 1.

Identities

For any property partitioning a finite set into finitely many smaller sets, the sum of the cardinalities of the smaller sets equals the cardinality of the bigger set. The Eulerian numbers partition the permutations of n elements, so their sum equals the factorial n!. I.e.

:\sum_{k=0}^{n-1} A(n,k) = n!, \text{ for }n > 0.

as well as A(0,0)=0!. To avoid conflict with the empty sum convention, it is convenient to simply state the theorems for n>0 only.

Much more generally, for a fixed function f\colon \mathbb{R} \rightarrow \mathbb{C} integrable on the interval (0, n)Exercise 6.65 in Concrete Mathematics by Graham, Knuth and Patashnik.

:\sum_{k=0}^{n-1} A(n, k)\, f(k) = n!\int_0^1 \cdots \int_0^1 f\left(\left\lfloor x_1 + \cdots + x_n\right\rfloor\right) {\mathrm d}x_1 \cdots {\mathrm d}x_n

Worpitzky's identity{{cite journal |last1=Worpitzky |first1=J. |title=Studien über die Bernoullischen und Eulerschen Zahlen |journal=Journal für die reine und angewandte Mathematik |date=1883 |volume=94 |pages=203–232 |url=https://eudml.org/doc/148532}} expresses x^n as the linear combination of Eulerian numbers with binomial coefficients:

:\sum_{k=0}^{n-1}A(n,k)\binom{x+k}{n}=x^n.

From it, it follows that

:\sum_{k=1}^{m}k^n=\sum_{k=0}^{n-1} A(n,k) \binom{m+k+1}{n+1}.

=Formulas involving alternating sums=

The alternating sum of the Eulerian numbers for a fixed value of n is related to the Bernoulli number B_{n+1}

:\sum_{k=0}^{n-1}(-1)^k A(n,k) = 2^{n+1}(2^{n+1}-1) \frac{B_{n+1}}{n+1}, \text{ for }n > 0.

Furthermore,

:\sum_{k=0}^{n-1}(-1)^k \frac{A(n,k)}{\binom{n-1}{k}}=0, \text{ for }n > 1

and

:\sum_{k=0}^{n-1}(-1)^k \frac{A(n,k)}{\binom{n}{k}}=(n+1)B_{n}, \text{ for } n > 1

=Formulas involving the polynomials=

The symmetry property implies:

:A_n(t) = t^{n-1} A_n(t^{-1})

The Eulerian numbers are involved in the generating function for the sequence of nth powers:

:\sum_{i=1}^\infty i^n x^i = \frac{1}{(1-x)^{n+1}}\sum_{k=0}^n A(n,k)\,x^{k+1} = \frac{x}{(1-x)^{n+1}}A_n(x)

An explicit expression for Eulerian polynomials is{{Cite journal |last1=Qi |first1=Feng |last2=Guo |first2=Bai-Ni |date=2017-08-01 |title=Explicit formulas and recurrence relations for higher order Eulerian polynomials |journal=Indagationes Mathematicae |volume=28 |issue=4 |pages=884–891 |doi=10.1016/j.indag.2017.06.010 |issn=0019-3577|doi-access=free }}

A_n(t) = \sum_{k=0}^n \left\{ {n \atop k} \right\} k! (t-1)^{n-k}

where \left\{ {n \atop k} \right\} is the Stirling number of the second kind.

Eulerian numbers of the second order

The permutations of the multiset \{1, 1, 2, 2, \ldots, n, n\} which have the property that for each k, all the numbers appearing between the two occurrences of k in the permutation are greater than k are counted by the double factorial number (2n-1)!!.

The Eulerian number of the second order, denoted \left\langle \! \left\langle {n \atop m} \right\rangle \! \right\rangle , counts the number of all such permutations that have exactly m ascents. For instance, for n = 3 there are 15 such permutations, 1 with no ascents, 8 with a single ascent, and 6 with two ascents:

: 332211,

: 221133, 221331, 223311, 233211, 113322, 133221, 331122, 331221,

: 112233, 122133, 112332, 123321, 133122, 122331.

The Eulerian numbers of the second order satisfy the recurrence relation, that follows directly from the above definition:

: \left\langle \!\! \left\langle {n \atop k} \right\rangle \!\! \right\rangle = (2n-k-1) \left\langle \!\! \left\langle {n-1 \atop k-1} \right\rangle \!\! \right\rangle + (k+1) \left\langle \!\! \left\langle {n-1 \atop k} \right\rangle \!\! \right\rangle,

with initial condition for n = 0, expressed in Iverson bracket notation:

: \left\langle \!\! \left\langle {0 \atop k} \right\rangle \!\! \right\rangle = [k=0].

Correspondingly, the Eulerian polynomial of second order, here denoted Pn (no standard notation exists for them) are

:P_n(x) := \sum_{k=0}^n \left\langle \!\! \left\langle {n \atop k} \right\rangle \!\! \right\rangle x^k

and the above recurrence relations are translated into a recurrence relation for the sequence Pn(x):

: P_{n+1}(x) = (2nx+1) P_n(x) - x(x-1) P_n^\prime(x)

with initial condition P_0(x) = 1. . The latter recurrence may be written in a somewhat more compact form by means of an integrating factor:

: (x-1)^{-2n-2} P_{n+1}(x) = \left( x\,(1-x)^{-2n-1} P_n(x) \right)^\prime

so that the rational function

: u_n(x) := (x-1)^{-2n} P_{n}(x)

satisfies a simple autonomous recurrence:

: u_{n+1} = \left( \frac{x}{1-x} u_n \right)^\prime, \quad u_0=1

Whence one obtains the Eulerian polynomials of second order as P_n(x) = (1-x)^{2n} u_n(x), and the Eulerian numbers of second order as their coefficients.

The following table displays the first few second-order Eulerian numbers:

:

class="wikitable" style="text-align:right;"
{{diagonal split header|n | k}}

! width="50" | 0

! width="50" | 1

! width="50" | 2

! width="50" | 3

! width="50" | 4

! width="50" | 5

! width="50" | 6

! width="50" | 7

! width="50" | 8

0

|1

|

|

|

|

|

|

|

|

1

| 1 || || || || || || || ||

2

| 1 || 2 || || || || || || ||

3

| 1 || 8 || 6 || || || || || ||

4

| 1 || 22 || 58 || 24 || || || || ||

5

| 1 || 52 || 328 || 444 || 120 || || || ||

6

| 1 || 114 || 1452 || 4400 || 3708 || 720 || || ||

7

| 1 || 240 || 5610 || 32120 || 58140 || 33984 || 5040 || ||

8

| 1 || 494 || 19950 || 195800 || 644020 || 785304 || 341136 || 40320 ||

9

| 1 || 1004 || 67260 || 1062500 || 5765500 || 12440064 || 11026296 || 3733920 || 362880

The sum of the n-th row, which is also the value P_n(1), is (2n-1)!!.

Indexing the second-order Eulerian numbers comes in three flavors:

  • {{OEIS|A008517}} following Riordan and Comtet,
  • {{OEIS|A201637}} following Graham, Knuth, and Patashnik,
  • {{OEIS|A340556}}, extending the definition of Gessel and Stanley.

References

  • Eulerus, Leonardus [Leonhard Euler] (1755). Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum [Foundations of differential calculus, with applications to finite analysis and series]. Academia imperialis scientiarum Petropolitana; Berolini: Officina Michaelis.
  • {{cite journal|first1=L. |last1=Carlitz|title=Eulerian Numbers and polynomials | year=1959|journal=Math. Mag.|volume=32 | number=5 | pages=247–260|doi=10.2307/3029225|jstor=3029225}}
  • {{cite journal|first1=H. W. |last1=Gould|title=Evaluation of sums of convolved powers using Stirling and Eulerian Numbers|year=1978|journal=Fib. Quart.|volume =16 |pages=488–497|number=6|doi=10.1080/00150517.1978.12430271 |url=https://www.fq.math.ca/16-6.html}}
  • {{cite journal|first1=Jacques | last1=Desarmenien | first2=Dominique | last2=Foata | title=The signed Eulerian numbers| journal=Discrete Math.

|year=1992|volume=99 | number=1–3| pages=49–58|doi=10.1016/0012-365X(92)90364-L| doi-access=free}}

  • {{cite journal|year=1992|journal=Europ. J. Combinat. | volume=13 | pages=379–399|number=5|title= On the Eulerian Numbers M=max (A(n,k))|first1=Leonce |last1=Lesieur | first2=Jean-Louis | last2=Nicolas|doi=10.1016/S0195-6698(05)80018-6|doi-access=free}}
  • {{cite journal

|first1=P. L. |last1=Butzer | first2=M. |last2=Hauss

|title=Eulerian numbers with fractional order parameters

|journal=Aequationes Mathematicae | year=1993 | volume=46|issue=1–2 |pages=119–142

|url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002610515 | doi=10.1007/bf01834003

|s2cid=121868847 }}

  • {{cite journal|first1=M.V. |last1=Koutras|title=Eulerian numbers associated with sequences of polynomials|journal=Fib. Quart.|year=1994|pages=44–57|volume=32|number=1|doi=10.1080/00150517.1994.12429255 |url=https://www.fq.math.ca/32-1.html}}
  • {{cite book|last1=Graham|

last2=Knuth|last3=Patashnik|year=1994|title=Concrete Mathematics: A Foundation for Computer Science|edition=2nd|publisher=Addison-Wesley|pages=267–272}}

  • {{cite journal|first1=Leetsch C. |last1=Hsu |author1-link=Leetsch C. Hsu | first2=Peter | last2=Jau-Shyong Shiue| title=On certain summation problems and generalizations of Eulerian polynomials and numbers|journal=Discrete Math. | volume=204 | year=1999 |issue=1–3 | doi=10.1016/S0012-365X(98)00379-3|pages=237–247|doi-access=free }}
  • {{cite arXiv|eprint=0710.1124 |title=Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials|year=2007|first1=Khristo N. |last1=Boyadzhiev|class=math.CA}}
  • {{cite book |first1=T. Kyle|last1= Petersen|year=2015|title = Eulerian Numbers |chapter = Eulerian numbers |series= Birkhäuser Advanced Texts Basler Lehrbücher|publisher=Birkhäuser|doi=10.1007/978-1-4939-3091-3_1|pages=3–18|isbn= 978-1-4939-3090-6}}

Citations

{{Reflist|colwidth=30em}}