Evolutionary programming
{{Short description|Evolutionary algorithm with a defined structure}}
{{Evolutionary algorithms}}
Evolutionary programming is an evolutionary algorithm, where a share of new population is created by mutation of previous population without crossover.{{cite journal |last1=Slowik |first1=Adam |last2=Kwasnicka |first2=Halina |title=Evolutionary algorithms and their applications to engineering problems |journal=Neural Computing and Applications |date=1 August 2020 |volume=32 |issue=16 |pages=12363–12379 |doi=10.1007/s00521-020-04832-8 |language=en |issn=1433-3058|doi-access=free }}{{cite journal |last1=Abido |first1=Mohammad A. |last2=Elazouni |first2=Ashraf |title=Modified multi-objective evolutionary programming algorithm for solving project scheduling problems |journal=Expert Systems with Applications |date=30 November 2021 |volume=183 |pages=115338 |doi=10.1016/j.eswa.2021.115338 |url=https://www.sciencedirect.com/science/article/abs/pii/S0957417421007673 |issn=0957-4174|url-access=subscription }} Evolutionary programming differs from evolution strategy ES() in one detail. All individuals are selected for the new population, while in ES(), every individual has the same probability to be selected. It is one of the four major evolutionary algorithm paradigms.{{cite journal |last1=Brameier |first1=Markus |title=On Linear Genetic Programming |journal=Dissertation |date=2004 |url=http://d-nb.info:80/1011533146/34 |access-date=27 December 2024}}
History
It was first used by Lawrence J. Fogel in the US in 1960 in order to use simulated evolution as a learning process aiming to generate artificial intelligence.{{cite book |date=2009 |doi=10.1109/9780470544600.ch7|isbn=978-0-470-54460-0 |chapter=Artificial Intelligence through Simulated Evolution |title=Evolutionary Computation }} It was used to evolve finite-state machines as predictors.{{cite journal |last1=Abraham |first1=Ajith |last2=Nedjah |first2=Nadia |last3=Mourelle |first3=Luiza de Macedo |title=Evolutionary Computation: from Genetic Algorithms to Genetic Programming |journal=Genetic Systems Programming: Theory and Experiences |series=Studies in Computational Intelligence |date=2006 |volume=13 |pages=1–20 |doi=10.1007/3-540-32498-4_1 |url=https://link.springer.com/chapter/10.1007/3-540-32498-4_1 |publisher=Springer |isbn=978-3-540-29849-6 |language=en|url-access=subscription }}
See also
References
External links
- [https://web.archive.org/web/20120225015603/http://www.aip.de/~ast/EvolCompFAQ/Q1_2.htm The Hitch-Hiker's Guide to Evolutionary Computation: What's Evolutionary Programming (EP)?]
- [http://www.cleveralgorithms.com/nature-inspired/evolution/evolutionary_programming.html Evolutionary Programming by Jason Brownlee (PhD)] {{Webarchive|url=https://web.archive.org/web/20130118233236/http://www.cleveralgorithms.com/nature-inspired/evolution/evolutionary_programming.html |date=2013-01-18 }}
{{Evolutionary computation}}
{{Authority control}}
{{DEFAULTSORT:Evolutionary Programming}}
Category:Evolutionary algorithms
de:Evolutionäre Programmierung
{{compu-sci-stub}}