Exponential integral#Relation with other functions

{{Short description|Special function defined by an integral}}

{{distinguish|text=other integrals of exponential functions}}

{{Use American English|date = January 2019}}

File:Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svgIn mathematics, the exponential integral Ei is a special function on the complex plane.

It is defined as one particular definite integral of the ratio between an exponential function and its argument.

Definitions

For real non-zero values of x, the exponential integral Ei(x) is defined as

: \operatorname{Ei}(x) = -\int_{-x}^\infty \frac{e^{-t}}t\,dt = \int_{-\infty}^x \frac{e^t}t\,dt.

The Risch algorithm shows that Ei is not an elementary function. The definition above can be used for positive values of x, but the integral has to be understood in terms of the Cauchy principal value due to the singularity of the integrand at zero.

For complex values of the argument, the definition becomes ambiguous due to branch points at 0 and {{nowrap|\infty.}}Abramowitz and Stegun, p. 228 Instead of Ei, the following notation is used,Abramowitz and Stegun, p. 228, 5.1.1

:E_1(z) = \int_z^\infty \frac{e^{-t}}{t}\, dt,\qquad|{\rm Arg}(z)|<\piFile:Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg

For positive values of x, we have {{nowrap|-E_1(x) = \operatorname{Ei}(-x).}}

In general, a branch cut is taken on the negative real axis and E1 can be defined by analytic continuation elsewhere on the complex plane.

For positive values of the real part of z, this can be writtenAbramowitz and Stegun, p. 228, 5.1.4 with n = 1

:E_1(z) = \int_1^\infty \frac{e^{-tz}}{t}\, dt = \int_0^1 \frac{e^{-z/u}}{u}\, du ,\qquad \Re(z) \ge 0.

The behaviour of E1 near the branch cut can be seen by the following relation:Abramowitz and Stegun, p. 228, 5.1.7

:\lim_{\delta\to0+} E_1(-x \pm i\delta) = -\operatorname{Ei}(x) \mp i\pi,\qquad x>0.

Properties

Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above.

=Convergent series=

Image:Exponential integral.svg

For real or complex arguments off the negative real axis, E_1(z) can be expressed asAbramowitz and Stegun, p. 229, 5.1.11

:E_1(z) = -\gamma - \ln z - \sum_{k=1}^{\infty} \frac{(-z)^k}{k\; k!} \qquad (\left| \operatorname{Arg}(z) \right| < \pi)

where \gamma is the Euler–Mascheroni constant. The sum converges for all complex z, and we take the usual value of the complex logarithm having a branch cut along the negative real axis.

This formula can be used to compute E_1(x) with floating point operations for real x between 0 and 2.5. For x > 2.5, the result is inaccurate due to cancellation.

A faster converging series was found by Ramanujan:Andrews and Berndt, p. 130, 24.16

:{\rm Ei} (x) = \gamma + \ln x + \exp{(x/2)} \sum_{n=1}^\infty \frac{ (-1)^{n-1} x^n} {n! \, 2^{n-1}} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{2k+1}

=Asymptotic (divergent) series=

Image:AsymptoticExpansionE1.png

Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for E_1(10).Bleistein and Handelsman, p. 2 However, for positive values of x, there is a divergent series approximation that can be obtained by integrating x e^x E_1(x) by parts:Bleistein and Handelsman, p. 3

: E_1(x)=\frac{\exp(-x)} x \left(\sum_{n=0}^{N-1} \frac{n!}{(-x)^n} +O(N!x^{-N}) \right)

The relative error of the approximation above is plotted on the figure to the right for various values of N, the number of terms in the truncated sum (N=1 in red, N=5 in pink).

== Asymptotics beyond all orders ==

Using integration by parts, we can obtain an explicit formula{{Citation |last=O’Malley |first=Robert E. |title=Asymptotic Approximations |date=2014 |url=https://doi.org/10.1007/978-3-319-11924-3_2 |work=Historical Developments in Singular Perturbations |pages=27–51 |editor-last=O'Malley |editor-first=Robert E. |access-date=2023-05-04 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-319-11924-3_2 |isbn=978-3-319-11924-3|url-access=subscription }}\operatorname{Ei}(z) = \frac{e^{z}} {z} \left (\sum _{k=0}^{n} \frac{k!} {z^{k}} + e_{n}(z)\right), \quad e_{n}(z) \equiv (n + 1)!\ ze^{-z}\int _{ -\infty }^{z} \frac{e^{t}} {t^{n+2}}\,dtFor any fixed z, the absolute value of the error term |e_n(z)| decreases, then increases. The minimum occurs at n\sim |z|, at which point \vert e_{n}(z)\vert \leq \sqrt{\frac{2\pi } {\vert z\vert }}e^{-\vert z\vert }. This bound is said to be "asymptotics beyond all orders".

=Exponential and logarithmic behavior: bracketing=

Image:BracketingE1.png

From the two series suggested in previous subsections, it follows that E_1 behaves like a negative exponential for large values of the argument and like a logarithm for small values. For positive real values of the argument, E_1 can be bracketed by elementary functions as follows:Abramowitz and Stegun, p. 229, 5.1.20

:

\frac 1 2 e^{-x}\,\ln\!\left( 1+\frac 2 x \right)

< E_1(x) < e^{-x}\,\ln\!\left( 1+\frac 1 x \right)

\qquad x>0

The left-hand side of this inequality is shown in the graph to the left in blue; the central part E_1(x) is shown in black and the right-hand side is shown in red.

=Definition by Ein=

Both \operatorname{Ei} and E_1 can be written more simply using the entire function \operatorname{Ein}Abramowitz and Stegun, p. 228, see footnote 3. defined as

:

\operatorname{Ein}(z)

= \int_0^z (1-e^{-t})\frac{dt}{t}

= \sum_{k=1}^\infty \frac{(-1)^{k+1}z^k}{k\; k!}

(note that this is just the alternating series in the above definition of E_1). Then we have

:

E_1(z) \,=\, -\gamma-\ln z + {\rm Ein}(z)

\qquad \left| \operatorname{Arg}(z) \right| < \pi

:\operatorname{Ei}(x) \,=\, \gamma+\ln{x} - \operatorname{Ein}(-x)

\qquad x \neq 0

The function \operatorname{Ein} is related to the exponential generating function of the harmonic numbers:

:

\operatorname{Ein}(z) = e^{-z} \, \sum_{n=1}^\infty \frac {z^n}{n!} H_n

=Relation with other functions=

Kummer's equation

:z\frac{d^2w}{dz^2} + (b-z)\frac{dw}{dz} - aw = 0

is usually solved by the confluent hypergeometric functions M(a,b,z) and U(a,b,z). But when a=0 and b=1, that is,

:z\frac{d^2w}{dz^2} + (1-z)\frac{dw}{dz} = 0

we have

:M(0,1,z)=U(0,1,z)=1

for all z. A second solution is then given by E1(−z). In fact,

:E_1(-z)=-\gamma-i\pi+\frac{\partial[U(a,1,z)-M(a,1,z)]}{\partial a},\qquad 0<{\rm Arg}(z)<2\pi

with the derivative evaluated at a=0. Another connexion with the confluent hypergeometric functions is that E1 is an exponential times the function U(1,1,z):

:E_1(z)=e^{-z}U(1,1,z)

The exponential integral is closely related to the logarithmic integral function li(x) by the formula

:\operatorname{li}(e^x) = \operatorname{Ei}(x)

for non-zero real values of x .

=Generalization=

The exponential integral may also be generalized to

:E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n}\, dt,

which can be written as a special case of the upper incomplete gamma function:Abramowitz and Stegun, p. 230, 5.1.45

: E_n(x) =x^{n-1}\Gamma(1-n,x).

The generalized form is sometimes called the Misra functionAfter Misra (1940), p. 178 \varphi_m(x), defined as

:\varphi_m(x)=E_{-m}(x).

Many properties of this generalized form can be found in the [https://dlmf.nist.gov/8.19 NIST Digital Library of Mathematical Functions.]

Including a logarithm defines the generalized integro-exponential functionMilgram (1985)

:E_s^j(z)= \frac{1}{\Gamma(j+1)}\int_1^\infty \left(\log t\right)^j \frac{e^{-zt}}{t^s}\,dt.

=Derivatives=

The derivatives of the generalised functions E_n can be calculated by means of the formula Abramowitz and Stegun, p. 230, 5.1.26

:

E_n '(z) = - E_{n-1}(z)

\qquad (n=1,2,3,\ldots)

Note that the function E_0 is easy to evaluate (making this recursion useful), since it is just e^{-z}/z.Abramowitz and Stegun, p. 229, 5.1.24

=Exponential integral of imaginary argument=

[[Image:E1ofImaginaryArgument.png|right|200px|thumb|E_1(ix)

against x; real part black, imaginary part red.]]

If z is imaginary, it has a nonnegative real part, so we can use the formula

:

E_1(z) = \int_1^\infty

\frac{e^{-tz}} t \, dt

to get a relation with the trigonometric integrals \operatorname{Si} and \operatorname{Ci}:

:

E_1(ix) = i\left[ -\tfrac{1}{2}\pi + \operatorname{Si}(x)\right] - \operatorname{Ci}(x)

\qquad (x > 0)

The real and imaginary parts of \mathrm{E}_1(ix) are plotted in the figure to the right with black and red curves.

= Approximations =

There have been a number of approximations for the exponential integral function. These include:

  • The Swamee and Ohija approximation{{Cite journal|title = Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution|journal = Ground Water|date = 2003-05-01|issn = 1745-6584|pages = 387–390|volume = 41| issue = 3|doi = 10.1111/j.1745-6584.2003.tb02608.x|first = Pham Huy|last = Giao| pmid=12772832 | bibcode=2003GrWat..41..387G | s2cid=31982931 }} E_1(x) = \left (A^{-7.7}+B \right )^{-0.13}, where \begin{align}

A &= \ln\left [\left (\frac{0.56146}{x}+0.65\right)(1+x)\right] \\

B &= x^4e^{7.7x}(2+x)^{3.7}

\end{align}

  • The Allen and Hastings approximation {{Cite journal|title = Numerical evaluation of exponential integral: Theis well function approximation|journal = Journal of Hydrology|date = 1998-02-26|pages = 38–51|volume = 205|issue = 1–2|doi = 10.1016/S0022-1694(97)00134-0|first1 = Peng-Hsiang|last1 = Tseng|first2 = Tien-Chang|last2 = Lee|bibcode = 1998JHyd..205...38T }} E_1(x) = \begin{cases} - \ln x +\textbf{a}^T\textbf{x}_5,&x\leq1 \\ \frac{e^{-x}} x \frac{\textbf{b}^T \textbf{x}_3}{\textbf{c}^T\textbf{x}_3},&x\geq1 \end{cases} where \begin{align}

\textbf{a} & \triangleq [-0.57722, 0.99999, -0.24991, 0.05519, -0.00976, 0.00108]^T \\

\textbf{b} & \triangleq[0.26777,8.63476, 18.05902, 8.57333]^T \\

\textbf{c} & \triangleq[3.95850, 21.09965, 25.63296, 9.57332]^T \\

\textbf{x}_k &\triangleq[x^0,x^1,\dots, x^k]^T

\end{align}

  • The continued fraction expansion E_1(x) = \cfrac{e^{-x}}{x+\cfrac{1}{1+\cfrac{1}{x+\cfrac{2}{1+\cfrac{2}{x+\cfrac{3}{\ddots}}}}}}.
  • The approximation of Barry et al. {{Cite journal|title = Approximation for the exponential integral (Theis well function) |journal = Journal of Hydrology|date = 2000-01-31| pages = 287–291|volume = 227|issue = 1–4|doi = 10.1016/S0022-1694(99)00184-5|first1 = D. A|last1 = Barry|first2 = J. -Y|last2 = Parlange |first3 = L|last3 = Li|bibcode = 2000JHyd..227..287B }} E_1(x) = \frac{e^{-x}}{G+(1-G)e^{-\frac{x}{1-G}}}\ln\left[1+\frac G x -\frac{1-G}{(h+bx)^2}\right], where: \begin{align}

h &= \frac{1}{1+x\sqrt{x}}+\frac{h_{\infty}q}{1+q} \\

q &=\frac{20}{47}x^{\sqrt{\frac{31}{26}}} \\

h_{\infty} &= \frac{(1-G)(G^2-6G+12)}{3G(2-G)^2b} \\

b &=\sqrt{\frac{2(1-G)}{G(2-G)}} \\

G &= e^{-\gamma}

\end{align} with \gamma being the Euler–Mascheroni constant.

Inverse function of the Exponential Integral

We can express the Inverse function of the exponential integral in power series form:{{Cite web |title=Inverse function of the Exponential Integral {{math|Ei{{sup|-1}}(x)}} |url=https://math.stackexchange.com/questions/4901881/inverse-function-of-the-exponential-integral-mathrmei-1x |access-date=2024-04-24 |website=Mathematics Stack Exchange |language=}}

: \forall |x| < \frac{\mu}{\ln(\mu)},\quad \mathrm{Ei}^{-1}(x) = \sum_{n=0}^\infty \frac{x^n}{n!} \frac{P_n(\ln(\mu))}{\mu^n}

where \mu is the Ramanujan–Soldner constant and (P_n) is polynomial sequence defined by the following recurrence relation:

: P_0(x) = x,\ P_{n+1}(x) = x(P_n'(x) - nP_n(x)).

For n > 0, \deg P_n = n and we have the formula :

: P_n(x) = \left.\left(\frac{\mathrm d}{\mathrm dt}\right)^{n-1} \left(\frac{te^x}{\mathrm{Ei}(t+x)-\mathrm{Ei}(x)}\right)^n\right|_{t=0}.

Applications

  • Time-dependent heat transfer
  • Nonequilibrium groundwater flow in the Theis solution (called a well function)
  • Radiative transfer in stellar and planetary atmospheres
  • Radial diffusivity equation for transient or unsteady state flow with line sources and sinks
  • Solutions to the neutron transport equation in simplified 1-D geometries{{cite book|title=Nuclear Reactor Theory|year=1970|publisher=Van Nostrand Reinhold Company|author=George I. Bell|author2=Samuel Glasstone}}
  • Solutions to the Trachenko-Zaccone nonlinear differential equation for the stretched exponential function in the relaxation of amorphous solids and glass transition{{Cite journal |last1=Trachenko |first1=K. |last2=Zaccone |first2=A.|date=2021-06-14 |title=Slow stretched-exponential and fast compressed-exponential relaxation from local event dynamics |url=https://iopscience.iop.org/article/10.1088/1361-648X/ac04cd |journal=Journal of Physics: Condensed Matter |language=en |volume=33 |issue= |pages=315101 |doi= 10.1088/1361-648X/ac04cd|bibcode= |issn=0953-8984|arxiv=2010.10440 }}{{Cite journal |last1=Ginzburg |first1=V. V.| last2=Gendelman | first2= O. V.| last3=Zaccone |first3=A.|date=2024-02-23 |title=Unifying Physical Framework for Stretched-Exponential, Compressed-Exponential, and Logarithmic Relaxation Phenomena in Glassy Polymers|url=https://pubs.acs.org/doi/full/10.1021/acs.macromol.3c02480 |journal=Macromolecules |language=en |volume=57 |issue= 5|pages=2520–2529 |doi= 10.1021/acs.macromol.3c02480|bibcode= |issn=0024-9297|arxiv=2311.09321 }}

See also

Notes

{{reflist|2}}

References

  • {{cite book |last = Abramowitz

|first = Milton

|others = Abramowitz and Stegun

|author2 = Irene Stegun

|title = Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables

|publisher = Dover

|year = 1964

|location = New York

|url = https://archive.org/details/handbookofmathe000abra

|isbn = 978-0-486-61272-0

|url-access = registration

}}, [http://people.math.sfu.ca/~cbm/aands/page_228.htm Chapter 5].

  • {{cite book

| last = Bender

| first = Carl M.

|author2=Steven A. Orszag

| title = Advanced mathematical methods for scientists and engineers

| publisher = McGraw–Hill

| year = 1978

| isbn = 978-0-07-004452-4

}}

  • {{cite book

| last = Bleistein

| first = Norman

|author2=Richard A. Handelsman

| title = Asymptotic Expansions of Integrals

| publisher = Dover

| year = 1986

| isbn = 978-0-486-65082-1

}}

  • {{Citation | last1=Andrews | first1=George E. | last2=Berndt | first2=Bruce C. | title=Ramanujan's lost notebook. Part IV | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-1-4614-4080-2 | year=2013}}
  • {{cite journal

|doi=10.1093/qmath/1.1.176

|first=Ida W.

|last=Busbridge

|journal=Quart. J. Math. (Oxford)

|year=1950

|volume=1

|issue=1

|title=On the integro-exponential function and the evaluation of some integrals involving it

|pages=176–184

|bibcode=1950QJMat...1..176B

}}

  • {{cite journal

|first1=A.

|last1=Stankiewicz

|title=Tables of the integro-exponential functions

|journal=Acta Astronomica

|volume=18

|page=289

|year=1968

|bibcode=1968AcA....18..289S

}}

  • {{cite journal

|first1=R. R.

|last1=Sharma

|first2=Bahman

|last2=Zohuri

|title=A general method for an accurate evaluation of exponential integrals E1(x), x>0

|journal=J. Comput. Phys.

|volume=25

|number=2

|pages=199–204

|doi=10.1016/0021-9991(77)90022-5

|year=1977

|bibcode=1977JCoPh..25..199S

}}

  • {{cite journal

|doi=10.1090/S0025-5718-1983-0701632-1

|first1=K. S.

|last1=Kölbig

|title=On the integral exp(−μt)tν−1logmt dt

|journal=Math. Comput.

|year=1983

|pages=171–182

|volume=41

|number=163

|doi-access=free

}}

  • {{cite journal

|doi=10.1090/S0025-5718-1985-0777276-4

|first=M. S.

|last=Milgram

|journal=Mathematics of Computation

|title=The generalized integro-exponential function

|volume=44

|issue=170

|year=1985

|mr=0777276

|pages=443–458

|jstor = 2007964

|doi-access=free

}}

  • {{cite journal

| last1 = Misra

| first1 = Rama Dhar

| year = 1940

| title = On the Stability of Crystal Lattices. II

| journal = Mathematical Proceedings of the Cambridge Philosophical Society

| volume = 36

| issue = 2

| pages = 173

| doi = 10.1017/S030500410001714X

| last2 = Born

| first2 = M.

|bibcode = 1940PCPS...36..173M | s2cid = 251097063

}}

  • {{cite journal

|first1=C.

|last1=Chiccoli

|first2=S.

|last2=Lorenzutta

|first3=G.

|last3=Maino

|title=On the evaluation of generalized exponential integrals Eν(x)

|journal=J. Comput. Phys.

|volume=78

|issue=2

|pages=278–287

|year=1988

|doi=10.1016/0021-9991(88)90050-2

|bibcode=1988JCoPh..78..278C

}}

  • {{cite journal

|first1=C.

|last1=Chiccoli

|first2=S.

|last2=Lorenzutta

|first3=G.

|last3=Maino

|title=Recent results for generalized exponential integrals

|journal=Computer Math. Applic.

|volume=19

|number=5

|pages=21–29

|year=1990

|doi=10.1016/0898-1221(90)90098-5

|url=https://www.openaccessrepository.it/record/135675

|archive-url=https://web.archive.org/web/20241211053950/https://www.openaccessrepository.it/record/135675

|url-status=dead

|archive-date=December 11, 2024

|doi-access=

|url-access=subscription

}}

  • {{cite journal

|first1=Allan J.

|last1=MacLeod

|title=The efficient computation of some generalised exponential integrals

|journal=J. Comput. Appl. Math.

|doi=10.1016/S0377-0427(02)00556-3

|year=2002

|volume=148

|number=2

|pages=363–374

|bibcode=2002JCoAM.148..363M

|doi-access=free

}}

  • {{Citation | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | location=New York | isbn=978-0-521-88068-8 | chapter=Section 6.3. Exponential Integrals | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=266 | access-date=2011-08-09 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=266 | url-status=dead }}
  • {{dlmf|id=6|title=Exponential, Logarithmic, Sine, and Cosine Integrals|first=N. M. |last=Temme}}