External ray#Uniformization

{{Cleanup rewrite|date=December 2021}}

An external ray is a curve that runs from infinity toward a Julia or Mandelbrot set.J. Kiwi : Rational rays and critical portraits of complex polynomials. Ph. D. Thesis SUNY at Stony Brook (1997); [http://www.math.sunysb.edu/cgi-bin/preprint.pl?ims97-15 IMS Preprint #1997/15.] {{Webarchive|url=https://web.archive.org/web/20041105030845/http://www.math.sunysb.edu/cgi-bin/preprint.pl?ims97-15 |date=2004-11-05 }}

Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray.

External rays are used in complex analysis, particularly in complex dynamics and geometric function theory.

History

External rays were introduced in Douady and Hubbard's study of the Mandelbrot set

Types

Criteria for classification :

  • plane : parameter or dynamic
  • map
  • bifurcation of dynamic rays
  • Stretching
  • landing{{cite journal | arxiv=1406.3428 | doi=10.1007/s00222-015-0627-3 | title=Non-landing parameter rays of the multicorns | year=2016 | last1=Inou | first1=Hiroyuki | last2=Mukherjee | first2=Sabyasachi | journal=Inventiones Mathematicae | volume=204 | issue=3 | pages=869–893 | bibcode=2016InMat.204..869I | s2cid=253746781 }}

=plane =

External rays of (connected) Julia sets on dynamical plane are often called dynamic rays.

External rays of the Mandelbrot set (and similar one-dimensional connectedness loci) on parameter plane are called parameter rays.

=bifurcation=

Dynamic ray can be:

  • bifurcated = branched{{Cite journal |doi=10.1017/S0143385700006854 |title=Bifurcations of dynamic rays in complex polynomials of degree two |year=1992 |last1=Atela |first1=Pau |journal=Ergodic Theory and Dynamical Systems |volume=12 |issue=3 |pages=401–423 |s2cid=123478692 }} = broken {{cite journal | arxiv=2009.02788 | last1=Petersen | first1=Carsten L. | last2=Zakeri | first2=Saeed | title=Periodic points and smooth rays | journal=Conformal Geometry and Dynamics of the American Mathematical Society | year=2020 | volume=25 | issue=8 | pages=170–178 | doi=10.1090/ecgd/364 }}
  • smooth = unbranched = unbroken

When the filled Julia set is connected, there are no branching external rays. When the Julia set is not connected then some external rays branch.[https://orbit.dtu.dk/en/publications/holomorphic-dynamics-on-accumulation-of-stretching-rays Holomorphic Dynamics: On Accumulation of Stretching Rays by Pia B.N. Willumsen, see page 12]

=stretching=

Stretching rays were introduced by Branner and Hubbard:[http://pi.math.cornell.edu/~hubbard/IterationCubics1.pdf The iteration of cubic polynomials Part I : The global topology of parameter by BODIL BRANNER and JOHN H. HUBBARD][https://www.youtube.com/watch?v=DyJDt4EyiBA&list=PL53AB2CAE70F31F2A&index=29 Stretching rays for cubic polynomials by Pascale Roesch]

"The notion of stretching rays is a generalization of that of external rays for the Mandelbrot set to higher degree polynomials."{{cite journal|url=https://www.ams.org/journals/ecgd/2004-08-04/S1088-4173-04-00102-X/S1088-4173-04-00102-X.pdf|doi=10.1090/s1088-4173-04-00102-x |title=Landing property of stretching rays for real cubic polynomials |year=2004 |last1=Komori |first1=Yohei |last2=Nakane |first2=Shizuo |journal= Conformal Geometry and Dynamics |volume=8 |issue=4 |pages=87–114 |bibcode=2004CGDAM...8...87K }}

=landing=

Every rational parameter ray of the Mandelbrot set lands at a single parameter.[https://web.archive.org/web/20160526222635/http://www.math.cornell.edu/~hubbard/OrsayFrench.pdf A. Douady, J. Hubbard: Etude dynamique des polynˆomes complexes. Publications math´ematiques d’Orsay 84-02 (1984) (premi`ere partie) and 85-04 (1985) (deuxi`eme partie).]{{cite arXiv | eprint=math/9711213 | last1=Schleicher | first1=Dierk | title=Rational parameter rays of the Mandelbrot set | year=1997 }}

Maps

=Polynomials=

==Dynamical plane = z-plane ==

External rays are associated to a compact, full, connected subset K\, of the complex plane as :

  • the images of radial rays under the Riemann map of the complement of K\,
  • the gradient lines of the Green's function of K\,
  • field lines of Douady-Hubbard potential[https://www.youtube.com/watch?v=N3ah6iTupIg&t=2652s Video : The beauty and complexity of the Mandelbrot set by John Hubbard ( see part 3 )]
  • an integral curve of the gradient vector field of the Green's function on neighborhood of infinity[http://qcpages.qc.cuny.edu/~yjiang/HomePageYJ/Download/2004MandLocConn.pdf Yunping Jing : Local connectivity of the Mandelbrot set at certain infinitely renormalizable points ] Complex Dynamics and Related Topics, New Studies in Advanced Mathematics, 2004, The International Press, 236-264

External rays together with equipotential lines of Douady-Hubbard potential ( level sets) form a new polar coordinate system for exterior ( complement ) of K\,.

In other words the external rays define vertical foliation which is orthogonal to horizontal foliation defined by the level sets of potential.[http://www.math.northwestern.edu/~demarco/basins.pdf POLYNOMIAL BASINS OF INFINITY LAURA DEMARCO AND KEVIN M. PILGRIM]

===Uniformization===

Let \Psi_c\, be the conformal isomorphism from the complement (exterior) of the closed unit disk \overline{\mathbb{D}} to the complement of the filled Julia set \ K_c .

:\Psi_c: \hat{\Complex} \setminus \overline{\mathbb{D}} \to \hat{\Complex} \setminus K_c

where \hat{\Complex} denotes the extended complex plane.

Let \Phi_c = \Psi_c^{-1}\, denote the Boettcher map.[http://www.mndynamics.com/indexp.html How to draw external rays by Wolf Jung]

\Phi_c\, is a uniformizing map of the basin of attraction of infinity, because it conjugates f_c on the complement of the filled Julia set K_c to f_0(z)=z^2 on the complement of the unit disk:

:\begin{align}

\Phi_c: \hat{\Complex} \setminus K_c &\to \hat{\Complex} \setminus \overline{\mathbb{D}}\\

z & \mapsto \lim_{n\to \infty} (f_c^n(z))^{2^{-n}}

\end{align}

and

: \Phi_c \circ f_c \circ \Phi_c^{-1} = f_0

A value w = \Phi_c(z) is called the Boettcher coordinate for a point z \in \hat{\Complex}\setminus K_c.

===Formal definition of dynamic ray===

Image:Erays.svg

The external ray of angle \theta\, noted as \mathcal{R}^K _{\theta} is:

  • the image under \Psi_c\, of straight lines \mathcal{R}_{\theta} = \{\left(r\cdot e^{2\pi i \theta}\right) : \ r > 1 \}

:\mathcal{R}^K _{\theta} = \Psi_c(\mathcal{R}_{\theta})

  • set of points of exterior of filled-in Julia set with the same external angle \theta

:\mathcal{R}^K _{\theta} = \{ z\in \hat{\Complex} \setminus K_c : \arg(\Phi_c(z)) = \theta \}

====Properties====

The external ray for a periodic angle \theta\, satisfies:

:f(\mathcal{R}^K _{\theta}) = \mathcal{R}^K _{2 \theta}

and its landing point{{usurped|1=[https://web.archive.org/web/20160303233036/http://eprintweb.org/S/article/math/0609280 Tessellation and Lyubich-Minsky laminations associated with quadratic maps I: Pinching semiconjugacies Tomoki Kawahira]}} \gamma_f(\theta) satisfies:

:f(\gamma_f(\theta)) = \gamma_f(2\theta)

==Parameter plane = c-plane ==

"Parameter rays are simply the curves that run perpendicular to the equipotential curves of the M-set."[http://linas.org/art-gallery/escape/phase/phase.html Douady Hubbard Parameter Rays by Linas Vepstas]

===Uniformization===

File:Jung200.png as an image of unit circle under \Psi_M\,]]

File:Jung50e.png of complement (exterior) of Mandelbrot set]]

Let \Psi_M\, be the mapping from the complement (exterior) of the closed unit disk \overline{\mathbb{D}} to the complement of the Mandelbrot set \ M .[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN001185500 John H. Ewing, Glenn Schober, The area of the Mandelbrot Set]

:\Psi_M:\mathbb{\hat{C}}\setminus \overline{\mathbb{D}}\to\mathbb{\hat{C}}\setminus M

and Boettcher map (function) \Phi_M\,, which is uniformizing map[http://projecteuclid.org/euclid.dmj/1077304731 Irwin Jungreis: The uniformization of the complement of the Mandelbrot set. Duke Math. J. Volume 52, Number 4 (1985), 935-938.] of complement of Mandelbrot set, because it conjugates complement of the Mandelbrot set \ M and the complement (exterior) of the closed unit disk

:\Phi_M: \mathbb{\hat{C}}\setminus M \to \mathbb{\hat{C}}\setminus \overline{\mathbb{D}}

it can be normalized so that :

\frac{\Phi_M(c)}{c} \to 1 \ as\ c \to \infty \,[http://www.math.cornell.edu/~hubbard/OrsayEnglish.pdf Adrien Douady, John Hubbard, Etudes dynamique des polynomes complexes I & II, Publ. Math. Orsay. (1984-85) (The Orsay notes)]

where :

:\mathbb{\hat{C}} denotes the extended complex plane

Jungreis function \Psi_M\, is the inverse of uniformizing map :

:\Psi_M = \Phi_{M}^{-1} \,

In the case of complex quadratic polynomial one can compute this map using Laurent series about infinity{{cite journal | doi=10.1006/aama.1993.1002 | title=Computing the Laurent Series of the Map Ψ: C − D → C − M | year=1993 | last1=Bielefeld | first1=B. | last2=Fisher | first2=Y. | last3=Vonhaeseler | first3=F. | journal=Advances in Applied Mathematics | volume=14 | pages=25–38 | doi-access=free }}[http://mathworld.wolfram.com/MandelbrotSet.html Weisstein, Eric W. "Mandelbrot Set." From MathWorld--A Wolfram Web Resource]

:c = \Psi_M (w) = w + \sum_{m=0}^{\infty} b_m w^{-m} = w -\frac{1}{2} + \frac{1}{8w} - \frac{1}{4w^2} + \frac{15}{128w^3} + ...\,

where

:c \in \mathbb{\hat{C}}\setminus M

:w \in \mathbb{\hat{C}}\setminus \overline{\mathbb{D}}

===Formal definition of parameter ray===

The external ray of angle \theta\, is:

  • the image under \Psi_c\, of straight lines \mathcal{R}_{\theta} = \{\left(r*e^{2\pi i \theta}\right) : \ r > 1 \}

:\mathcal{R}^M _{\theta} = \Psi_M(\mathcal{R}_{\theta})

  • set of points of exterior of Mandelbrot set with the same external angle \theta[http://www.math.titech.ac.jp/~kawahira/programs/mandel-exray.pdf An algorithm to draw external rays of the Mandelbrot set by Tomoki Kawahira ]

:\mathcal{R}^M _{\theta} = \{ c\in \mathbb{\hat{C}}\setminus M : \arg(\Phi_M(c)) = \theta \}

===Definition of the Boettcher map ===

Douady and Hubbard define:

\Phi_M(c) \ \overset{\underset{\mathrm{def}}{}}{=} \ \Phi_c(z=c)\,

so external angle of point c\, of parameter plane is equal to external angle of point z=c\, of dynamical plane

==External angle==

2015-03-04 exray binary.gif|collecting bits outwards

Binary decomposition.png|Binary decomposition of unrolled circle plane

Binary decomposition of dynamic plane for f0(z) = z^2.png|binary decomposition of dynamic plane for f(z) = z^2

Angle {{mvar|θ}} is named external angle ( argument ).http://www.mrob.com/pub/muency/externalangle.html External angle at Mu-ENCY (the Encyclopedia of the Mandelbrot Set) by Robert Munafo

Principal value of external angles are measured in turns modulo 1

:1 turn = 360 degrees = 2 × {{Pi}} radians

Compare different types of angles :

class="wikitable"
! external angle

! internal angle

! plain angle

parameter plane

| \arg(\Phi_M(c)) \,

| \arg(\rho_n(c)) \,

| \arg(c) \,

dynamic plane

| \arg(\Phi_c(z)) \,

|

| \arg(z) \,

===Computation of external argument===

  • argument of Böttcher coordinate as an external argument[http://www.mndynamics.com/indexp.html Computation of the external argument by Wolf Jung]
  • \arg_M(c) = \arg(\Phi_M(c))
  • \arg_c(z) = \arg(\Phi_c(z))
  • kneading sequence as a binary expansion of external argumentA. DOUADY, Algorithms for computing angles in the Mandelbrot set (Chaotic Dynamics and Fractals, ed. Barnsley and Demko, Acad. Press, 1986, pp. 155-168).[http://www.math.cornell.edu/~hubbard/OrsayEnglish.pdf Adrien Douady, John H. Hubbard: Exploring the Mandelbrot set. The Orsay Notes. page 58 ][http://www.dhushara.com/DarkHeart/DarkHeart.htm Exploding the Dark Heart of Chaos by Chris King from Mathematics Department of University of Auckland]

=Transcendental maps=

For transcendental maps ( for example exponential ) infinity is not a fixed point but an essential singularity and there is no Boettcher isomorphism.[http://pcwww.liv.ac.uk/~helenam/Poster.pdf Topological Dynamics of Entire Functions by Helena Mihaljevic-Brandt][http://pcwww.liv.ac.uk/~helenam/slides_manchester.pdf Dynamic rays of entire functions and their landing behaviour by Helena Mihaljevic-Brandt]

Here dynamic ray is defined as a curve :

Images

=Dynamic rays=

JuliaRay 1 3.png|Julia set for f_c(z) = z^2 -1 with 2 external ray landing on repelling fixed point alpha

JuliaRay3.png|Julia set and 3 external rays landing on fixed point \alpha_c\,

Dynamic internal and external rays .svg|Dynamic external rays landing on repelling period 3 cycle and 3 internal rays landing on fixed point \alpha_c\,

Julia-p9.png|Julia set with external rays landing on period 3 orbit

Parabolic rays landing on fixed point.ogv|Rays landing on parabolic fixed point for periods 2-40

Dynamical plane with branched periodic external ray 0 for map f(z) = z*z + 0.35.png| Branched dynamic ray

=Parameter rays=

Mandelbrot set for complex quadratic polynomial with parameter rays of root points

File:Mandelbrot set for complex quadratic polynomial with parameter rays of root points.jpg|External rays for angles of the form : n / ( 21 - 1) (0/1; 1/1) landing on the point c= 1/4, which is cusp of main cardioid ( period 1 component)

Image:Man2period.jpg|External rays for angles of the form : n / ( 22 - 1) (1/3, 2/3) landing on the point c= - 3/4, which is root point of period 2 component

Image:Man3period.jpg|External rays for angles of the form : n / ( 23 - 1) (1/7,2/7) (3/7,4/7) landing on the point c= -1.75 = -7/4 (5/7,6/7) landing on the root points of period 3 components.

Image:Man4period.jpg|External rays for angles of form : n / ( 24 - 1) (1/15,2/15) (3/15, 4/15) (6/15, 9/15) landing on the root point c= -5/4 (7/15, 8/15) (11/15,12/15) (13/15, 14/15) landing on the root points of period 4 components.

Image:Man5period.jpg| External rays for angles of form : n / ( 25 - 1) landing on the root points of period 5 components

Image:Mandel ie 1 3.jpg|internal ray of main cardioid of angle 1/3: starts from center of main cardioid c=0, ends in the root point of period 3 component, which is the landing point of parameter (external) rays of angles 1/7 and 2/7

Image:Iray.png|Internal ray for angle 1/3 of main cardioid made by conformal map from unit circle

File:Smiley mini Mandelbrot set with external rays.png| Mini Mandelbrot set with period 134 and 2 external rays

File:Part of parameter plane with external 5 rays landing on the Mandelbrot set.png

File:One arm spiral - part of Mandelbrot set.png

File:Mini Mandelbrot set period=68 with external rays.png

File:Wakes near the period 3 island in the Mandelbrot set.png|Wakes near the period 3 island

File:Wakes along the main antenna in the Mandelbrot set.png|Wakes along the main antenna

Parameter space of the complex exponential family f(z)=exp(z)+c. Eight parameter rays landing at this parameter are drawn in black.

Parameter plane of the complex exponential family f(z)=exp(z)+c with 8 external ( parameter) rays

Programs that can draw external rays

  • [http://www.mndynamics.com/indexp.html Mandel ] - program by Wolf Jung written in C++ using Qt with source code available under the GNU General Public License
  • [https://web.archive.org/web/20080509103942/http://www.ibiblio.org/e-notes/MSet/external.htm Java applets] by Evgeny Demidov ( code of mndlbrot::turn function by Wolf Jung has been ported to Java ) with free source code
  • [http://www.uvm.edu/~msargent/programs/index.html ezfract by Michael Sargent], uses the code by Wolf Jung
  • [https://web.archive.org/web/20141030192550/http://www.math.nagoya-u.ac.jp/~kawahira/programs/otis.html OTIS by Tomoki KAWAHIRA ] - Java applet without source code
  • [https://web.archive.org/web/20060602113914/http://inls.ucsd.edu/%7Efisher/Complex/ Spider XView program by Yuval Fisher ]
  • [http://archives.math.utk.edu/software/msdos/fractals/yabmp097/.html YABMP by Prof. Eugene Zaustinsky] {{Webarchive|url=https://web.archive.org/web/20060615042830/http://archives.math.utk.edu/software/msdos/fractals/yabmp097/.html |date=2006-06-15 }} for DOS without source code
  • [http://www.picard.ups-tlse.fr/~cheritat/e_index.html DH_Drawer] {{Webarchive|url=https://web.archive.org/web/20081021094744/http://picard.ups-tlse.fr/~cheritat/e_index.html |date=2008-10-21 }} by Arnaud Chéritat written for Windows 95 without source code
  • [http://linas.org/art-gallery/ Linas Vepstas C programs ] for Linux console with source code
  • [https://web.archive.org/web/20080705115700/http://abel.math.harvard.edu/~ctm/programs.html Program Julia] by Curtis T. McMullen written in C and Linux commands for C shell console with source code
  • [http://www.mathematik.hu-berlin.de/~erat/mj/ mjwinq program by Matjaz Erat ] written in delphi/windows without source code ( For the external rays it uses the methods from quad.c in julia.tar by Curtis T McMullen)
  • [http://www.juliasets.dk/RatioField.htm RatioField by Gert Buschmann], for windows with Pascal source code for [http://www.bloodshed.net/devpascal.html Dev-Pascal 1.9.2] (with Free Pascal compiler )
  • Mandelbrot program by Milan Va, written in Delphi with source code
  • [http://www.mrob.com/pub/muency/externalangle.html Power MANDELZOOM by Robert Munafo]
  • [https://web.archive.org/web/20120120133504/http://claudiusmaximus.goto10.org/cm/2011-10-09_ruff-0.2_and_gruff-0.2_released.html ruff by Claude Heiland-Allen]

See also

References

{{Reflist}}

  • Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer 1993
  • Adrien Douady and John H. Hubbard, Etude dynamique des polynômes complexes, Prépublications mathémathiques d'Orsay 2/4 (1984 / 1985)
  • John W. Milnor, Periodic Orbits, External Rays and the Mandelbrot Set: An Expository Account; Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque No. 261 (2000), 277–333. (First appeared as a [https://web.archive.org/web/20060424085751/http://www.math.sunysb.edu/preprints.html Stony Brook IMS Preprint] in 1999, available as [https://arxiv.org/abs/math.DS/9905169 arXiV:math.DS/9905169].)
  • John Milnor, Dynamics in One Complex Variable, Third Edition, Princeton University Press, 2006, {{ISBN|0-691-12488-4}}
  • [https://web.archive.org/web/20040828174339/http://www.math.sunysb.edu/cgi-bin/thesis.pl?thesis02-3 Wolf Jung : Homeomorphisms on Edges of the Mandelbrot Set. Ph.D. thesis of 2002]