Fermat cubic

{{Short description|Geometrical surface}}

File:3D model of Fermat cubic.stl

In geometry, the Fermat cubic, named after Pierre de Fermat, is a surface defined by

: x^3 + y^3 + z^3 = 1. \

Methods of algebraic geometry provide the following parameterization of Fermat's cubic:

: x(s,t) = {3 t - {1\over 3} (s^2 + s t + t^2)^2 \over t (s^2 + s t + t^2) - 3}

: y(s,t) = {3 s + 3 t + {1\over 3} (s^2 + s t + t^2)^2 \over t (s^2 + s t + t^2) - 3}

: z(s,t) = {-3 - (s^2 + s t + t^2) (s + t) \over t (s^2 + s t + t^2) - 3}.

In projective space the Fermat cubic is given by

:w^3+x^3+y^3+z^3=0.

The 27 lines lying on the Fermat cubic are easy to describe explicitly: they are the 9 lines of the form (w : aw : y : by) where a and b are fixed numbers with cube −1, and their 18 conjugates under permutations of coordinates.

Image:FermatCubicSurface.PNG

::::Real points of Fermat cubic surface.

References

  • {{Citation |last1=Ness |first1=Linda |title=Curvature on the Fermat cubic |url=https://projecteuclid.org/euclid.dmj/1077313099 |mr=518106 |year=1978 |journal=Duke Mathematical Journal |issn=0012-7094 |volume=45 |issue=4 |pages=797–807 |doi=10.1215/s0012-7094-78-04537-4}}
  • {{cite web|url=http://www.math.harvard.edu/~elkies/4cubes.html|title=Complete cubic parameterization of the Fermat cubic surface|first=Noam|last=Elkies}}

{{Authority control}}

Category:Algebraic surfaces

{{algebraic-geometry-stub}}