Fermat cubic
{{Short description|Geometrical surface}}
File:3D model of Fermat cubic.stl
In geometry, the Fermat cubic, named after Pierre de Fermat, is a surface defined by
:
Methods of algebraic geometry provide the following parameterization of Fermat's cubic:
:
:
:
In projective space the Fermat cubic is given by
:
The 27 lines lying on the Fermat cubic are easy to describe explicitly: they are the 9 lines of the form (w : aw : y : by) where a and b are fixed numbers with cube −1, and their 18 conjugates under permutations of coordinates.
::::Real points of Fermat cubic surface.
References
- {{Citation |last1=Ness |first1=Linda |title=Curvature on the Fermat cubic |url=https://projecteuclid.org/euclid.dmj/1077313099 |mr=518106 |year=1978 |journal=Duke Mathematical Journal |issn=0012-7094 |volume=45 |issue=4 |pages=797–807 |doi=10.1215/s0012-7094-78-04537-4}}
- {{cite web|url=http://www.math.harvard.edu/~elkies/4cubes.html|title=Complete cubic parameterization of the Fermat cubic surface|first=Noam|last=Elkies}}
{{Authority control}}
{{algebraic-geometry-stub}}