Fermi–Walker transport#Fermi.E2.80.93Walker differentiation

{{Short description|Mathematical technique in general relativity}}

Fermi–Walker transport is a process in general relativity used to define a coordinate system or reference frame such that all curvature in the frame is due to the presence of mass/energy density and not due to arbitrary spin or rotation of the frame. It was discovered by Fermi in 1921 and rediscovered by Walker in 1932.{{Cite journal |last1=Bini |first1=Donato |last2=Jantzen |first2=Robert T. |year=2002 |title=Circular Holonomy, Clock Effects and Gravitoelectromagnetism: Still Going Around in Circles After All These Years |url=https://www.sif.it/riviste/sif/ncb/econtents/2002/117/09-11/article/21 |journal=Nuovo Cimento B |volume=117 |issue=9–11 |pages=983–1008 |arxiv=gr-qc/0202085 |archive-date=2023-12-14 |access-date=2023-12-14 |archive-url=https://web.archive.org/web/20231214035101/https://www.sif.it/riviste/sif/ncb/econtents/2002/117/09-11/article/21 |url-status=live }}

Fermi–Walker differentiation

In the theory of Lorentzian manifolds, Fermi–Walker differentiation is a generalization of covariant differentiation. In general relativity, Fermi–Walker derivatives of the spacelike vector fields in a frame field, taken with respect to the timelike unit vector field in the frame field, are used to define non-inertial and non-rotating frames, by stipulating that the Fermi–Walker derivatives should vanish. In the special case of inertial frames, the Fermi–Walker derivatives reduce to covariant derivatives.

With a (-+++) sign convention, this is defined for a vector field X along a curve \gamma(s):

:\frac{D_F X}{d s}=\frac{DX}{d s} - \left(X,\frac{DV}{d s}\right) V + (X,V)\frac{DV}{d s},

where {{math|V}} is four-velocity, {{math|D}} is the covariant derivative, and ( \cdot , \cdot ) is the scalar product. If

:\frac{D_F X}{d s}=0,

then the vector field {{math|X}} is Fermi–Walker transported along the curve.{{harvnb|Hawking|Ellis|1973|p=80}} Vectors perpendicular to the space of four-velocities in Minkowski spacetime, e.g., polarization vectors, under Fermi–Walker transport experience Thomas precession.

Using the Fermi derivative, the Bargmann–Michel–Telegdi equation{{harvnb|Bargmann|Michel|Telegdi|1959}} for spin precession of electron in an external electromagnetic field can be written as follows:

:\frac{D_Fa^{\tau}}{ds} = 2\mu (F^{\tau \lambda} - u^{\tau} u_{\sigma} F^{\sigma \lambda})a_{\lambda},

where a^{\tau} and \mu are polarization four-vector and magnetic moment, u^{\tau} is four-velocity of electron, a^{\tau}a_{\tau} = -u^{\tau}u_{\tau} = -1, u^{\tau} a_{\tau}=0, and F^{\tau \sigma} is the electromagnetic field strength tensor. The right side describes Larmor precession.

Co-moving coordinate systems

{{main|Proper reference frame (flat spacetime)#Comoving tetrads}}

A coordinate system co-moving with a particle can be defined. If we take the unit vector v^{\mu} as defining an axis in the co-moving coordinate system, then any system transforming with proper time is said to be undergoing Fermi–Walker transport.{{harvnb|Misner|Thorne|Wheeler|1973|p=170}}

Generalised Fermi–Walker differentiation

Fermi–Walker differentiation can be extended for any V where (V,V)\ne0 (that is, not a light-like vector). This is defined for a vector field X along a curve \gamma(s):

:\frac{\mathcal D X}{d s}=\frac{D X}{d s}

+ \left(X,\frac{DV}{d s}\right)\frac{V}{(V,V)}

- \frac{(X,V)}{(V,V)}\frac{DV}{d s}

- \left(V,\frac{DV}{d s}\right)\frac{(X,V)}{(V,V)^2} V ,{{cite arXiv|eprint=astro-ph/0411595 |title=Geometry of Dynamical Systems|date=2004 |last1=Kocharyan |first1=A. A. }}

Except for the last term, which is new, and basically caused by the possibility that (V, V) is not constant, it can be derived by taking the previous equation, and dividing each V^2 by (V,V).

If (V,V)=-1, then we recover the Fermi–Walker differentiation:

\left(V,\frac{DV}{d s}\right)=\frac{1}{2}\frac{d}{ds}(V,V)=0\ , and \frac{\mathcal{D} X}{d s}=\frac{D_F X}{d s} .

See also

Notes

{{Reflist}}

References

  • {{cite journal|first1=V.|last1=Bargmann|authorlink1=Valentine Bargmann|first2=L.|last2=Michel|first3=V. L.|last3=Telegdi|title=Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field|journal=Physical Review Letters|volume=2|issue=10|page=435|year=1959|doi=10.1103/PhysRevLett.2.435 |bibcode=1959PhRvL...2..435B}}.
  • {{cite book|last1=Landau|first1=L.D.|authorlink1=Lev Landau|last2=Lifshitz|first2=E.M.|authorlink2=Evgeny Lifshitz|title=The Classical Theory of Fields|series=Course of Theoretical Physics|volume=2|edition=4th|publisher=Butterworth–Heinemann|isbn=0-7506-2768-9|year=2002|orig-year=1939}}
  • {{cite book|first1=Charles W.|last1=Misner|author-link=Charles W. Misner|first2=Kip S.|last2=Thorne|author2-link=Kip Thorne|first3=John A.|last3=Wheeler|author3-link=John A. Wheeler|title=Gravitation|publisher= W. H. Freeman|date=1973|isbn=0-7167-0344-0|title-link=Gravitation (book)}}
  • {{cite book |first1=Stephen W.|last1=Hawking|author-link=Stephen Hawking|first2=George F.R.|last2=Ellis|author2-link=George Francis Rayner Ellis|title=The Large Scale Structure of Space-time|publisher= Cambridge University Press|date=1973|isbn=0-521-09906-4}}
  • {{cite arXiv |eprint=astro-ph/0411595 |last1=Kocharyan |first1=A. A. |title=Geometry of Dynamical Systems |date=2004 }}

{{Physics-footer}}

{{DEFAULTSORT:Fermi-Walker transport}}

Category:Mathematical methods in general relativity