Fibbinary number

{{Short description|Numbers whose binary representation does not contain two consecutive ones}}

In mathematics, the fibbinary numbers are the numbers whose binary representation does not contain two consecutive ones. That is, they are sums of distinct and non-consecutive powers of two.{{r|oeis|arndt}}

Relation to binary and Fibonacci numbers

The fibbinary numbers were given their name by Marc LeBrun, because they combine certain properties of binary numbers and Fibonacci numbers:{{r|oeis}}

  • The number of fibbinary numbers less than any given power of two is a Fibonacci number. For instance, there are 13 fibbinary numbers less than 32, the numbers 0, 1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, and 21.{{r|oeis}}
  • The condition of having no two consecutive ones, used in binary to define the fibbinary numbers, is the same condition used in the Zeckendorf representation of any number as a sum of non-consecutive Fibonacci numbers.{{r|oeis}}
  • The nth fibbinary number (counting 0 as the 0th number) can be calculated by expressing n in its Zeckendorf representation, and re-interpreting the resulting binary sequence as the binary representation of a number.{{r|oeis}} For instance, the Zeckendorf representation of 19 is 101001 (where the 1's mark the positions of the Fibonacci numbers used in the expansion {{nowrap|19 {{=}} 13 + 5 + 1}}), the binary sequence 101001, interpreted as a binary number, represents {{nowrap|41 {{=}} 32 + 8 + 1}}, and the 19th fibbinary number is 41.
  • The nth fibbinary number (again, counting 0 as 0th) is even or odd if and only if the nth value in the Fibonacci word is 0 or 1, respectively.{{r|kimberling}}

Properties

Because the property of having no two consecutive ones defines a regular language, the binary representations of fibbinary numbers can be recognized by a finite automaton, which means that the fibbinary numbers form a 2-automatic set.{{r|allsha}}

The fibbinary numbers include the Moser–de Bruijn sequence, sums of distinct powers of four. Just as the fibbinary numbers can be formed by reinterpreting Zeckendorff representations as binary, the Moser–de Bruijn sequence can be formed by reinterpreting binary representations as quaternary.{{r|mdb}}

A number n is a fibbinary number if and only if the binomial coefficient \tbinom{3n}{n} is odd.{{r|oeis}} Relatedly, n is fibbinary if and only if the central Stirling number of the second kind \textstyle \left\{{2n\atop n}\right\} is odd.{{r|chaman}}

Every fibbinary number f_i takes one of the two forms 2f_j or 4f_j+1, where f_j is another fibbinary number.{{r|kimberling|madwag}}

Correspondingly, the power series whose exponents are fibbinary numbers,

B(x)=1+x+x^2+x^4+x^5+x^8+\cdots,

obeys the functional equation{{r|arndt}}

B(x)=xB(x^4)+B(x^2).

{{harvtxt|Madritsch|Wagner|2010}} provide asymptotic formulas for the number of integer partitions in which all parts are fibbinary.{{r|madwag}}

If a hypercube graph Q_d of dimension d is indexed by integers from 0 to 2^d-1, so that two vertices are adjacent when their indexes have binary representations with Hamming distance one, then the subset of vertices indexed by the fibbinary numbers forms a Fibonacci cube as its induced subgraph.{{r|klavzar}}

Every number has a fibbinary multiple. For instance, 15 is not fibbinary, but multiplying it by 11 produces 165 (101001012), which is.{{r|multiple}}

References

{{reflist|refs=

{{citation

| last1 = Allouche | first1 = J.-P.

| last2 = Shallit | first2 = J. | author2-link = Jeffrey Shallit

| last3 = Skordev | first3 = G.

| doi = 10.1016/j.disc.2004.12.004

| issue = 1–3

| journal = Discrete Mathematics

| mr = 2131083

| pages = 1–15

| title = Self-generating sets, integers with missing blocks, and substitutions

| volume = 292

| year = 2005| doi-access = free

}}

{{citation|last=Arndt|first=Jörg|title=Matters Computational: Ideas, Algorithms, Source Code|publisher=Springer|year=2011|url=http://jjj.de/fxt/fxtbook.pdf|pages=62, 755–756}}.

{{citation

| last1 = Chan | first1 = O-Yeat

| last2 = Manna | first2 = Dante

| contribution = Congruences for Stirling numbers of the second kind

| contribution-url = https://oyeat.com/papers/stirling_final.pdf

| doi = 10.1090/conm/517/10135

| mr = 2731094

| pages = 97–111

| publisher = American Mathematical Society | location = Providence, Rhode Island

| series = Contemporary Mathematics

| title = Gems in Experimental Mathematics

| volume = 517

| year = 2010| isbn = 978-0-8218-4869-2

}}

{{citation

| last = Kimberling | first = Clark | author-link = Clark Kimberling

| editor-last = Howard | editor-first = Frederic T.

| contribution = Ordering words and sets of numbers: the Fibonacci case

| doi = 10.1007/978-0-306-48517-6_14

| location = Dordrecht

| mr = 2076798

| pages = 137–144

| publisher = Kluwer Academic Publishers

| title = Applications of Fibonacci Numbers, Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci Numbers and Their Applications

| year = 2004| isbn = 978-90-481-6545-2 }}

{{citation

| last = Klavžar | first = Sandi | author-link = Sandi Klavžar

| doi = 10.1007/s10878-011-9433-z

| issue = 4

| journal = Journal of Combinatorial Optimization

| mr = 3044155

| pages = 505–522

| title = Structure of Fibonacci cubes: a survey

| volume = 25

| year = 2013| s2cid = 5557314 }}

{{citation

| last1 = Madritsch | first1 = Manfred

| last2 = Wagner | first2 = Stephan

| doi = 10.1007/s00605-009-0126-y

| issue = 1

| journal = Monatshefte für Mathematik

| mr = 2670233

| pages = 85–114

| title = A central limit theorem for integer partitions

| volume = 161

| year = 2010| s2cid = 15008932

}}

{{cite OEIS|mode=cs2|A000695|Moser–de Bruijn sequence}}

{{cite OEIS|mode=cs2|A300867|The least positive k such that k * n is a Fibbinary number}}

{{cite OEIS|mode=cs2|A003714|Fibbinary numbers}}

}}

Category:Binary arithmetic

Category:Base-dependent integer sequences

Category:Fibonacci numbers