Finkelstein reaction
{{Short description|Chemistry}}
{{Reactionbox
| Name = Finkelstein reaction
| Type = Substitution reaction
| NamedAfter = Hans Finkelstein
| Section3 = {{Reactionbox Identifiers
| OrganicChemistryNamed = finkelstein-reaction
| RSC_ontology_id = 0000155
}}
}}
File:Finkelstein_Reaction_in_Flask.jpg
The Finkelstein reaction, named after the German chemist Hans Finkelstein,{{cite journal|first = Hans|last = Finkelstein|authorlink = Hans Finkelstein|journal = Ber. Dtsch. Chem. Ges.|year = 1910|volume = 43|issue = 2|pages = 1528–1532|title = Darstellung organischer Jodide aus den entsprechenden Bromiden und Chloriden|language = German|doi = 10.1002/cber.19100430257|url = https://zenodo.org/record/1426411}} is a type of SN2 reaction (substitution nucleophilic bimolecular reaction) that involves the exchange of one halogen atom for another. It is an equilibrium reaction, but the reaction can be driven to completion by exploiting the differential solubility of various halide salts, or by using a large excess of the desired halide.{{March6th}}
Method
The classic Finkelstein reaction entails the conversion of an alkyl chloride or an alkyl bromide to an alkyl iodide by treatment with a solution of sodium iodide in acetone. Sodium iodide is soluble in acetone while sodium chloride and sodium bromide are not;{{cite journal | last = Ervithayasuporn | first = V. | year = 2013 | title = One-pot synthesis of halogen exchanged silsesquioxanes: octakis(3-bromopropyl)octasilsesquioxane and octakis(3-iodopropyl)octasilsesquioxane | journal = Dalton Trans. | volume = 42 | issue = 37 | pages = 13747–13753 | doi = 10.1039/C3DT51373D | pmid = 23907310 }} therefore, the reaction is driven toward products by mass action due to the precipitation of the poorly soluble NaCl or NaBr. An example involves the conversion of the ethyl ester of 5-bromovaleric acid to the iodide:{{cite journal|title=Copper-catalyzed Conjugate Addition of Functionalized Organozinc Reagents to α,β-Unsaturated Ketones: Ethyl 5-(3-oxocyclohexyl)pentanoate|author1=B. H. Lipshutz |author2=M. R. Wood |author3=R. Tirado
|journal=Org. Synth.|year=1999|volume=76|page=252
|doi=10.15227/orgsyn.076.0252}}
:EtO2C(CH2)4Br + NaI → EtO2C(CH2)4I + NaBr
Potassium fluoride is used for the conversion of chlorocarbons into fluorocarbons.{{OrgSynth | last1= Vogel| first1=A. I.| last2=Leicester| first2=J.| last3=Macey| first3=W. A. T. | title = n-Hexyl Fluoride | volume = 36|year=1956 | pages = 40| doi= 10.15227/orgsyn.036.0040}} Such reactions usually employ polar solvents such as dimethyl formamide, ethylene glycol, and dimethyl sulfoxide.Han, Q.; Li, H-Y. "Potassium Fluoride" in Encyclopedia of Reagents for Organic Synthesis, 2001 John Wiley & Sons,New York. {{doi|10.1002/047084289X.rp214}}
Use for analysis
Alkyl halides differ greatly in the ease with which they undergo the Finkelstein reaction. The reaction works well for primary (except for neopentyl) halides, and exceptionally well for allyl, benzyl, and α-carbonyl halides. Secondary halides are far less reactive. Vinyl, aryl and tertiary alkyl halides are unreactive; as a result, the reaction of NaI in acetone can be used as a qualitative test to determine which of the aforementioned classes an unknown alkyl halide belongs to, with the exception of alkyl iodides, as they yield the same product upon substitution. Below some relative rates of reaction (NaI in acetone at 60 °C):{{cite journal | last = Streitwieser | first = A. | authorlink = Andrew Streitwieser | year = 1956 | title = Solvolytic Displacement Reactions at Saturated Carbon Atoms | journal = Chem. Rev. | volume = 56 | pages = 571–752 | doi = 10.1021/cr50010a001 | issue = 4}}{{cite journal | title = The Effect of the Carbonyl and Related Groups on the Reactivity of Halides in SN2 Reactions |last1=Bordwell|first1 = F. G. |last2=Brannen|first2 = W. T. | journal = J. Am. Chem. Soc. | year = 1964 | volume = 86 | pages = 4645–4650 | doi = 10.1021/ja01075a025 | issue = 21}}
class="wikitable" |
Me–Cl
! Bu–Cl ! i-Pr–Cl ! PhCH2–Cl |
---|
179
| 1 | 0.0146 | 0.00003 | 64 | 179 | 1600 | 33000 |
Aromatic Finkelstein reaction
The aromatic chlorides and bromides are not easily substituted by iodide, though they may occur when appropriately catalyzed. The so-called "aromatic Finkelstein reaction" is catalyzed by copper(I) iodide in combination with diamine ligands.{{cite journal |first1=A.|last1 = Klapars |first2=S. L.|last2 = Buchwald | title = Copper-Catalyzed Halogen Exchange in Aryl Halides: An Aromatic Finkelstein Reaction | journal = J. Am. Chem. Soc. | volume = 124 | pages = 14844–14845 | doi = 10.1021/ja028865v | year = 2002 | issue = 50 | pmid = 12475315|s2cid = 11338218 }} Nickel bromide and tri-n-butylphosphine have been found to be suitable catalysts as well.{{cite journal | doi = 10.1039/c2cc30956d | title = Nickel-catalysed aromatic Finkelstein reaction of aryl and heteroaryl bromides | year = 2012 | last1 = Cant | first1 = Alastair A. | last2 = Bhalla | first2 = Rajiv | last3 = Pimlott | first3 = Sally L. | last4 = Sutherland | first4 = Andrew | journal = Chem. Commun. | volume = 48 | issue = 33 | pages = 3993–5 | pmid = 22422214}}
See also
- Halex process, also a salt metathesis, but for conversion of aryl chlorides to aryl fluorides