First and second fundamental theorems of invariant theory

In algebra, the first and second fundamental theorems of invariant theory concern the generators and relations of the ring of invariants in the ring of polynomial functions for classical groups (roughly, the first concerns the generators and the second the relations).{{harvnb|Procesi|2007|loc=Ch. 9, § 1.4.}} The theorems are among the most important results of invariant theory.

Classically the theorems are proved over the complex numbers. But characteristic-free invariant theory extends the theorems to a field of arbitrary characteristic.{{harvnb|Procesi|2007|loc=Ch. 13 develops this theory.}}

First fundamental theorem for <math>\operatorname{GL}(V)</math>

The theorem states that the ring of \operatorname{GL}(V)-invariant polynomial functions on {V^*}^p \oplus V^q is generated by the functions \langle \alpha_i | v_j \rangle, where \alpha_i are in V^* and v_j \in V.{{harvnb|Procesi|2007|loc=Ch. 9, § 1.4.}}

Second fundamental theorem for general linear group

Let V, W be finite-dimensional vector spaces over the complex numbers. Then the only \operatorname{GL}(V) \times \operatorname{GL}(W)-invariant prime ideals in \mathbb{C}[\operatorname{hom}(V, W)] are the determinant ideal

I_k = \mathbb{C}[\operatorname{hom}(V, W)]D_k

generated by the determinants of all the k \times k-minors.{{harvnb|Procesi|2007|loc=Ch. 11, § 5.1.}}

Notes

{{reflist}}

References

  • {{cite book | last=Procesi | first=Claudio |author-link=Claudio Procesi | title=Lie groups : an approach through invariants and representations | publisher=Springer | publication-place=New York | year=2007 | isbn=978-0-387-26040-2 | oclc=191464530}}

Further reading

  • Ch. II, § 4. of E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267, Springer-Verlag, New York, 1985. MR0770932
  • {{cite web|last=Artin|first=Michael|title=Noncommutative Rings|url=http://math.mit.edu/~etingof/artinnotes.pdf|year=1999}}
  • {{Fulton-Harris}}
  • Hanspeter Kraft and Claudio Procesi, [http://www.math.iitb.ac.in/~shripad/Wilberd/KP-Primer Classical Invariant Theory, a Primer]
  • {{Citation | last1=Weyl | first1=Hermann | author1-link=Hermann Weyl | title=The Classical Groups. Their Invariants and Representations | url=https://books.google.com/books?isbn=0691057567 | publisher=Princeton University Press | isbn=978-0-691-05756-9 | mr=0000255 | year=1939}}

Category:Invariant theory

Category:Theorems in algebra

{{algebra-stub}}