Flattening
{{short description|Measure of compression between circle to ellipse or sphere to an ellipsoid of revolution}}
{{Redirect|Ellipticity|ellipticity in differential calculus|elliptic operator|other uses|Flattening (disambiguation)}}
File:An ellipse with auxiliary circle.svg
File:Ellipsoid revolution oblate aab auxiliary sphere.svg
Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is and its definition in terms of the semi-axes and of the resulting ellipse or ellipsoid is
:
The compression factor is in each case; for the ellipse, this is also its aspect ratio.
Definitions
There are three variants: the flattening {{cite book |author=Snyder, John P. |title=Map Projections: A Working Manual |series=U.S. Geological Survey Professional Paper |volume=1395 |year=1987 |publisher=U.S. Government Printing Office |location=Washington, D.C. |doi=10.3133/pp1395 |doi-access=free |url=https://pubs.er.usgs.gov/publication/pp1395 }} sometimes called the first flattening,
{{cite journal |last=Tenzer |first=Róbert |title=Transformation of the Geodetic Horizontal Control to Another Reference Ellipsoid |journal=Studia Geophysica et Geodaetica |volume=46 |issue=1 |year=2002 |pages=27–32 |doi=10.1023/A:1019881431482 |s2cid=117114346 |url=https://www.proquest.com/docview/750849329|id={{ProQuest|750849329}} }} as well as two other "flattenings" and each sometimes called the second flattening,For example, is called the second flattening in: {{cite tech report |last=Taff |first=Laurence G. |title=An Astronomical Glossary |publisher=MIT Lincoln Lab |year=1980 |url=https://apps.dtic.mil/sti/citations/ADA084445 |page=84}} {{pb}} However, is called the second flattening in: {{cite book |last=Hooijberg |first=Maarten |title=Practical Geodesy: Using Computers |page=41 |publisher=Springer |year=1997 |doi=10.1007/978-3-642-60584-0_3}} sometimes only given a symbol,{{cite book | last=Maling |first=Derek Hylton | title=Coordinate Systems and Map Projections |edition=2nd |year=1992 | publisher =Pergamon Press|location=Oxford; New York |isbn=0-08-037233-3 |page=65}} {{pb}} {{cite tech report |last=Rapp |first=Richard H. |year=1991 |title=Geometric Geodesy, Part I |publisher=Ohio State Univ. Dept. of Geodetic Science and Surveying |url=http://hdl.handle.net/1811/24333}} {{pb}} {{cite web |last=Osborne |first=P. |year=2008 |title=The Mercator Projections |url=http://mercator.myzen.co.uk/mercator.pdf |url-status=dead |archive-url=https://web.archive.org/web/20120118224152/http://mercator.myzen.co.uk/mercator.pdf |archive-date=2012-01-18 |at=§5.2 }} or sometimes called the second flattening and third flattening, respectively.{{cite book |last=Lapaine |first=Miljenko |chapter=Basics of Geodesy for Map Projections |editor1-last=Lapaine |editor1-first=Miljenko |editor2-last=Usery |editor2-first=E. Lynn |title=Choosing a Map Projection |series=Lecture Notes in Geoinformation and Cartography |year=2017 |pages=327–343 |doi=10.1007/978-3-319-51835-0_13|isbn=978-3-319-51834-3 }}{{pb}}{{cite journal |last=Karney |first=Charles F.F. |year=2023 |title=On auxiliary latitudes |journal=Survey Review |pages=1–16 |doi=10.1080/00396265.2023.2217604 |arxiv=2212.05818|s2cid=254564050 }}
In the following, is the larger dimension (e.g. semimajor axis), whereas is the smaller (semiminor axis). All flattenings are zero for a circle ({{math|a {{=}} b}}).
::
class="wikitable" style="border:1px solid darkgray;" cellpadding="5"
! style="padding-left: 0.5em" scope="row" | (First) flattening | style="padding-left: 0.5em" | | style="padding-left: 0.5em" | | style="padding-left: 0.5em " | Fundamental. Geodetic reference ellipsoids are specified by giving |
style="padding-left: 0.5em" scope="row" | Second flattening
| style="padding-left: 0.5em" | | style="padding-left: 0.5em" | | style="padding-left: 0.5em" | Rarely used. |
---|
style="padding-left: 0.5em" scope="row" | Third flattening
| style="padding-left: 0.5em" | | style="padding-left: 0.5em" | | style="padding-left: 0.5em" | Used in geodetic calculations as a small expansion parameter.F. W. Bessel, 1825, Uber die Berechnung der geographischen Langen und Breiten aus geodatischen Vermessungen, Astron.Nachr., 4(86), 241–254, {{doi|10.1002/asna.201011352}}, translated into English by C. F. F. Karney and R. E. Deakin as The calculation of longitude and latitude from geodesic measurements, Astron. Nachr. 331(8), 852–861 (2010), E-print {{arxiv|0908.1824}}, {{bibcode|1825AN......4..241B}} |
Identities
The flattenings can be related to each-other:
:
f = \frac{2n}{1 + n}, \\[5mu]
n = \frac{f}{2 - f}.
\end{align}
The flattenings are related to other parameters of the ellipse. For example,
:
\frac ba &= 1-f = \frac{1-n}{1+n}, \\[5mu]
e^2 &= 2f-f^2 = \frac{4n}{(1+n)^2}, \\[5mu]
f &= 1-\sqrt{1-e^2},
\end{align}
where is the eccentricity.
See also
- Earth flattening
- {{section link|Eccentricity (mathematics)|Ellipses}}
- Equatorial bulge
- Ovality
- Planetary flattening
- Sphericity
- Roundness (object)