Forster–Swan theorem
The Forster–Swan theorem is a result from commutative algebra that states an upper bound for the minimal number of generators of a finitely generated module over a commutative Noetherian ring. The usefulness of the theorem stems from the fact, that in order to form the bound, one only needs the minimum number of generators of all localizations .
The theorem was proven in a more restrictive form in 1964 by Otto Forster{{cite journal |first=Otto |last=Forster |title=Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring|journal=Mathematische Zeitschrift |volume=84|pages=80–87 |date=1964 |doi=10.1007/BF01112211}} and then in 1967 generalized by Richard G. Swan{{cite journal |first=Richard G. |last=Swan |title=The number of generators of a module |journal=Math. Mathematische Zeitschrift |volume=102 |date=1967 |issue=4 |pages=318–322 |doi=10.1007/BF01110912 |url=https://eudml.org/doc/170878}} to its modern form.
Forster–Swan theorem
Let
- be a commutative Noetherian ring with one,
- be a finitely generated -module,
- a prime ideal of .
- are the minimal die number of generators to generated the -module respectively the -module .
According to Nakayama's lemma, in order to compute one can compute the dimension of over the field , i.e.
:
= Statement =
Define the local -bound
:
then the following holds{{citation|author=R. A. Rao und F. Ischebeck |date=2005 |editor=Physica-Verlag |location=Deutschland |pages=221 |title=Ideals and Reality: Projective Modules and Number of Generators of Ideals}}
:
Bibliography
- {{cite book |first1=R.A. |last1=Rao |first2=F. |last2=Ischebeck |date=2005 |title=Ideals and Reality: Projective Modules and Number of Generators of Ideals |place=Deutschland |publisher=Physica-Verlag}}
- {{cite journal |first=Richard G. |last=Swan |title=The number of generators of a module |journal=Math. Mathematische Zeitschrift |volume=102 |date=1967 |issue=4 |pages=318–322 |doi=10.1007/BF01110912 |url=https://eudml.org/doc/170878}}