Frankia
{{Short description|Genus of bacteria}}
{{About|the filamentous bacteria|the Frankish empire|Francia|the plant|Gymnarrhena}}
{{Automatic taxobox
| taxon = Frankia
| image = An alder root nodule gall.JPG
| image_caption = An alder root nodule.
| parent_authority = Becking 1970 (Approved Lists 1980){{cite journal | author = Becking JH. | title = Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174 | journal = International Journal of Systematic Bacteriology | year = 1970 | volume = 20 | pages = 201–220| doi = 10.1099/00207713-20-2-201 | doi-access = free }}
| authority = Brunchorst 1886{{cite journal | author = Brunchorst J. | title = Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaegnaceen | trans-title = On root swellings, particularly those of Alnus and the Elaeagnaceae | journal = Untersuchungen aus dem botanischen Institut in Tübingen [Investigations of the Botanical Institute in Tübingen ] | year = 1886 | volume = 2 | issue = 151–177}}
| type_species = Frankia alni
| type_species_authority = (Woronin 1866) Von Tubeuf 1895 non Steud. 1840
| subdivision_ranks = Species
| subdivision = See text
| synonyms =
- Frankiella Maire and Tison 1909 non von Speschnew 1900 non Racheboeuf 1983
- Parafrankia Gtari 2023
- Protofrankia Gtari 2023
- Pseudofrankia Gtari 2023
}}
Frankia is a genus of nitrogen-fixing bacteria that live in symbiosis with actinorhizal plants, similar to the Rhizobium bacteria found in the root nodules of legumes in the family Fabaceae. Frankia also initiate the forming of root nodules.
This genus was originally named by Jørgen Brunchorst, in 1886 to honor the German biologist Albert Bernhard Frank.{{Cite book|url=https://books.google.com/books?id=QQKdiHoNE_gC&q=A.B.Frank+frankia&pg=PA107|title=Prokaryotic Symbionts in Plants|last=Pawlowski|first=Katharina|date=2009-06-17|publisher=Springer Science & Business Media|isbn=9783540754602|pages=107}} Brunchorst considered the organism he had identified to be a filamentous fungus. {{ill|Jan-Hendrik Becking|lt=Becking|de||nl}} redefined the genus in 1970 as containing prokaryotic actinomycetes and created the family Frankiaceae within the Actinomycetales. He retained the original name of Frankia for the genus.{{Cite web |url=http://web.uconn.edu/mcbstaff/benson/Frankia/FrankiaTaxonomy.htm |title=Frankia taxonomy |access-date=2011-01-14 |archive-date=2011-07-27 |archive-url=https://web.archive.org/web/20110727030311/http://web.uconn.edu/mcbstaff/benson/Frankia/FrankiaTaxonomy.htm |url-status=dead }}
Image:A sectioned alder root nodule gall.JPG
__TOC__
Overview
Most Frankia strains are specific to different plant species. The bacteria are filamentous and convert atmospheric nitrogen into ammonia via the enzyme nitrogenase, a process known as nitrogen fixation. They do this while living in root nodules on actinorhizal plants. The bacteria can supply most or all of the nitrogen requirements of the host plant. As a result, actinorhizal plants colonise and often thrive in soils that are low in plant nutrients.[https://frankia.mcb.uconn.edu Frankia and Actinorhizal Plants]
Several Frankia genomes are now available which may help clarify how the symbiosis between prokaryote and plant evolved, how the environmental and geographical adaptations occurred, the metabolic diversity, and the horizontal gene flow among the symbiotic prokaryotes.
Frankia can resist low concentration of heavy metals such as, Cu, Co, and Zn.{{Cite journal|last1=Abdel‐lateif|first1=Khalid Salah El dein|last2=Mansour|first2=Samira R.|last3=El‐Badawy|first3=Mohamed F.|last4=Shohayeb|first4=Mohamed M.|date=2018|title=Isolation and molecular characterization of Frankia strains resistant to some heavy metals|journal=Journal of Basic Microbiology|volume=58|issue=9|pages=720–729|doi=10.1002/jobm.201800122|pmid=29962068|s2cid=49639716|issn=1521-4028}} Frankia may be an advantage for degraded soil. Degraded soil is known as soil that is heavy metal rich or nutrient depleted due to a drought. Frankia is a nitrogen-fixed organism, explaining why it is able to resist heavy metals.{{Cite journal|last1=El dein Abdel-lateif|first1=Khalid Salah|last2=Mansour|first2=Samira R.|last3=El-Badawy|first3=Mohamed F.|last4=Shohayeb|first4=Mohamed M.|date=September 2018|title=Isolation and molecular characterization of Frankia strains resistant to some heavy metals|journal=Journal of Basic Microbiology|volume=58|issue=9|pages=720–729|doi=10.1002/jobm.201800122|pmid=29962068|s2cid=49639716}}{{clarify|reason=Last two sentences incoherent.|date=May 2022}}
Frankia is a gram-positive Bacteria that is found on the roots of plants. The fact that Frankia is gram-positive means that the bacteria is made up of thick cell walls made out of protein called peptidologlycan. This helps with the resistance of the heavy metals that may be in the degraded soil.{{Cite journal|last1=Nouioui|first1=Imen|last2=Ghodhbane-Gtari|first2=Faten|last3=del Carmen Montero-Calasanz|first3=Maria|last4=Rohde|first4=Manfred|last5=Tisa|first5=Louis S.|last6=Gtari|first6=Maher|last7=Klenk|first7=Hans-Peter|date=2017-03-01|title=Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants|journal=Antonie van Leeuwenhoek|volume=110|issue=3|pages=313–320|doi=10.1007/s10482-016-0801-7|pmid=27830471|s2cid=39458226|issn=1572-9699}}
Frankia tolerates a narrow range of temperatures and soil pH levels. It grows best at around 30 degrees Celsius with an environment pH between 6.5 and 7.{{Cite journal|last1=Srivastava|first1=Amrita|last2=Singh|first2=Anumeha|last3=Singh|first3=Satya S.|last4=Mishra|first4=Arun K.|date=2017-04-16|title=Salt stress–induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains|journal=Journal of Environmental Science and Health, Part A|volume=52|issue=5|pages=420–428|doi=10.1080/10934529.2016.1270672|issn=1093-4529|pmid=28085556|s2cid=38519293}} These facts shows that Frankia is very sensitive to its environment. Though Frankia would not be suitable for all agriculture it does demonstrate possibilities in select areas, or in temperature controlled environments.{{citation needed|date=April 2023}}
Symbiont plants
{{Main|Actinorhizal plant}}
- All species in the genus Alnus in the family Betulaceae
- Some species in all four genera in the family Casuarinaceae
- Certain species in the genus Coriaria in the family Coriariaceae
- Datisca cannabina and Datisca glomerata in the family Datiscaceae
- All species in the three genera in the family Elaeagnaceae, Elaeagnus, Shepherdia, and Hippophae
- All species in the genera Myrica, Morella, and Comptonia in the family Myricaceae.
- All species in six genera in the family Rhamnaceae, Ceanothus, Colletia, Discaria, Trevoa, and possibly Adolphia
- Some species in the family Rosaceae including all the species in the genera Cercocarpus, Cowania, Purshia, Chamaebatia, and some species of Dryas{{cite book |last1=Schwintzer |first1=C. R. |last2=Tjepkema |first2=J. |title=The Biology of Frankia and Actinorhizal Plants |date=1990 |publisher=Academic Press |location=San Diego |isbn=978-0126332100}}
Nodule Formation
File:Frankia Longitudinal Section Toluidine Blue- Atchison, Black.png
Frankia forms nodules via two methods of root infection, intercellularly and intracellularly.{{Cite journal |last=Santi |first=Carole |last2=Bogusz |first2=Didier |last3=Franche |first3=Claudine |date=2013-03-10 |title=Biological nitrogen fixation in non-legume plants |url=http://dx.doi.org/10.1093/aob/mct048 |journal=Annals of Botany |volume=111 |issue=5 |pages=743–767 |doi=10.1093/aob/mct048 |issn=1095-8290|pmc=3631332 }} Intracellular infection is characterized by initial root-hair deformation which is then infected by the filamentous Frankia. The Frankia then moves within the root cells and forms a pre-nodule which is characterized by a bump on the root. This then gives rise to a Nodule primordium which feeds the bacteria via the vascular tissue of the plant allowing the nodule to mature.
In contrast the intercellular infection does not have root hair deformation. Instead, the filamentous Frankia invades the roots in the space between cells on the root. After this invasion a Nodule primordium is created similarly to the intracellular mode of formation and the nodule matures.
Phylogeny
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN){{cite web |author=A.C. Parte |url=https://lpsn.dsmz.de/genus/frankia |title=Frankia |access-date=2025-02-28 |publisher=List of Prokaryotic names with Standing in Nomenclature (LPSN) |display-authors=et al.}} and National Center for Biotechnology Information (NCBI).{{cite web |author=C.L. Schoch |url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=1854&lvl=3&lin=f&keep=1&srchmode=1&unlock |title=Frankia |access-date=2025-02-28 |publisher=National Center for Biotechnology Information (NCBI) taxonomy database |display-authors=et al.}}
class="wikitable" |
colspan=1 style="width: 30em;" | 16S rRNA based LTP_10_2024{{cite web |title=The LTP |url=https://imedea.uib-csic.es/mmg/ltp/#LTP| access-date=10 December 2024}}{{cite web |title=LTP_all tree in newick format |url=https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_all_10_2024.ntree |access-date=10 December 2024}}{{cite web |title=LTP_10_2024 Release Notes |url=https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_10_2024_release_notes.pdf |access-date=10 December 2024}}
! colspan=1 | 120 marker proteins based GTDB 09-RS220{{cite web |title=GTDB release 09-RS220 |url=https://gtdb.ecogenomic.org/about#4%7C |website=Genome Taxonomy Database |access-date=10 May 2024}}{{cite web |title=bac120_r220.sp_labels |url=https://data.gtdb.ecogenomic.org/releases/release220/220.0/auxillary_files/bac120_r220.sp_labels.tree |website=Genome Taxonomy Database |access-date=10 May 2024}}{{cite web |title=Taxon History |url=https://gtdb.ecogenomic.org/taxon_history/ |website=Genome Taxonomy Database |access-date=10 May 2024}} |
---|
style="vertical-align:top|
{{barlabel |size=0 |at1=-6 |label1=Protofrankia |bar1=green |at2=-2.5 |label2=Frankia s.s. |bar2=green |at3=2 |label3=Pseudofrankia |bar3=green |at4=5 |label4=Parafrankia |bar4=green |cladogram= {{Clade | style=font-size:90%;line-height:80% |label1=Frankia |1={{clade |1=F. coriariae Nouioui et al. 2017|barbegin1=green|barenf1=green |2={{clade |1={{clade |1={{clade |1=F. casuarinae Nouioui et al. 2016|barbegin1=green }} |2={{clade |1=F. umida Normand et al. 2023|bar1=green |2={{clade |1=F. alni (Woronin 1866) Von Tubeuf 1895|bar1=green |2={{clade |1=F. torreyi Nouioui et al. 2019|bar1=green |2={{clade |1="F. gtarii" Nouioui et al. 2023|bar1=green |2="F. tisai" Nouioui et al. 2023|barend2=green }} }} }} }} }} |2={{clade |1={{clade |1=F. inefficax Nouioui et al. 2017|barbegin1=green |2={{clade |1=F. asymbiotica Nouioui et al. 2017|bar1=green |2=F. saprophytica Nouioui et al. 2018|barend2=green }} }} |2={{clade |1=F. discariae Nouioui et al. 2017|barbegin1=green |2={{clade |1=F. soli Gtari et al. 2020|bar1=green |2={{clade |1=F. irregularis Nouioui et al. 2018|bar1=green |2={{clade |1=F. colletiae Nouioui et al. 2023|bar1=green |2=F. elaeagni (Schroeter 1886) Becking }} }} }} }} }} }} }} }} }} | {{Clade | style=font-size:90%;line-height:90% |1={{clade |1={{clade |label1=Protofrankia |1={{clade |1="Ca. Frankia meridionalis" Nguyen et al. 2019 |2={{clade |2=P. coriariae [incl. "Ca. P. datiscae" (Persson et al. 2011) Gtari 2022] }} }} }} |2={{clade |1={{clade |label1=Pseudofrankia |1={{clade |1=P. inefficax |2={{clade |1=P. asymbiotica |2=P. saprophytica }} }} }} |2={{clade |label1=Parafrankia |1={{clade |1={{clade |1=P. discariae |2=P. soli }} |2={{clade |1=P. irregularis |2={{clade |1=P. colletiae |2=P. elaeagni }} }} }} |label2=Frankia |2={{clade |1=F. casuarinae |2={{clade |1={{clade |1=F. canadensis |2=F. umida ["Ca. F. nodulisporulans" Herrera-Belaroussi et al. 2020] }} |2={{clade |1={{clade |1=F. alni |2=F. torreyi }} |2={{clade |1="Ca. F. alpina" Pozzi et al. 2020 [incl. "F. subtilis" Brunchorst 1886] |2={{clade |1="F. gtarii" |2="F. tisai" }} }} }} }} }} }} }} }} }} |
Species incertae sedis:
- F. nepalensis Nouioui et al. 2023
See also
References
{{Reflist|2}}
{{Portal bar|Biology}}
{{Bacteria classification}}
{{Taxonbar|from=Q134931}}
{{Authority control}}