Frobenius covariant

In matrix theory, the Frobenius covariants of a square matrix {{mvar|A}} are special polynomials of it, namely projection matrices Ai associated with the eigenvalues and eigenvectors of {{mvar|A}}.Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis. Cambridge University Press, {{ISBN|978-0-521-46713-1}}{{rp|pp.403,437–8}} They are named after the mathematician Ferdinand Frobenius.

Each covariant is a projection on the eigenspace associated with the eigenvalue {{math|λi}}.

Frobenius covariants are the coefficients of Sylvester's formula, which expresses a function of a matrix {{math|f(A)}} as a matrix polynomial, namely a linear combination

of that function's values on the eigenvalues of {{mvar|A}}.

Formal definition

Let {{mvar|A}} be a diagonalizable matrix with eigenvalues λ1, ..., λk.

The Frobenius covariant {{math|Ai}}, for i = 1,..., k, is the matrix

: A_i \equiv \prod_{j=1 \atop j \ne i}^k \frac{1}{\lambda_i-\lambda_j} (A - \lambda_j I)~.

It is essentially the Lagrange polynomial with matrix argument. If the eigenvalue λi is simple, then as an idempotent projection matrix to a one-dimensional subspace, {{math|Ai}} has a unit trace.

{{see also|Resolvent formalism}}

Computing the covariants

File:GeorgFrobenius.jpg (1849–1917), German mathematician. His main interests were elliptic functions differential equations, and later group theory.]]

The Frobenius covariants of a matrix {{mvar|A}} can be obtained from any eigendecomposition {{math|A {{=}} SDS−1}}, where {{mvar|S}} is non-singular and {{mvar|D}} is diagonal with {{math|Di,i {{=}} λi}}.

If {{mvar|A}} has no multiple eigenvalues, then let ci be the {{mvar|i}}th right eigenvector of {{mvar|A}}, that is, the {{mvar|i}}th column of {{mvar|S}}; and let ri be the {{mvar|i}}th left eigenvector of {{mvar|A}}, namely the {{mvar|i}}th row of {{mvar|S}}−1. Then {{math|Ai {{=}} ci ri}}.

If {{mvar|A}} has an eigenvalue λi appearing multiple times, then {{math|Ai {{=}} Σj cj rj}}, where the sum is over all rows and columns associated with the eigenvalue λi.{{rp|p.521}}

Example

Consider the two-by-two matrix:

: A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}.

This matrix has two eigenvalues, 5 and −2; hence {{math| (A − 5)(A + 2) {{=}} 0}}.

The corresponding eigen decomposition is

: A = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \\ 4 & -3 \end{bmatrix}.

Hence the Frobenius covariants, manifestly projections, are

: \begin{array}{rl}

A_1 &= c_1 r_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \end{bmatrix} = \begin{bmatrix} 3/7 & 3/7 \\ 4/7 & 4/7 \end{bmatrix} = A_1^2\\

A_2 &= c_2 r_2 = \begin{bmatrix} 1/7 \\ -1/7 \end{bmatrix} \begin{bmatrix} 4 & -3 \end{bmatrix} = \begin{bmatrix} 4/7 & -3/7 \\ -4/7 & 3/7 \end{bmatrix}=A_2^2 ~,

\end{array}

with

:A_1 A_2 = 0 , \qquad A_1 + A_2 = I ~.

Note {{math|tr{{nnbsp}}A1 {{=}} tr{{nnbsp}}A2 {{=}} 1}}, as required.

References