Functional regression

{{Short description|Type of regression analysis}}

Functional regression is a version of regression analysis when responses or covariates include functional data. Functional regression models can be classified into four types depending on whether the responses or covariates are functional or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates, (iii) functional responses with functional covariates, and (iv) scalar or functional responses with functional and scalar covariates. In addition, functional regression models can be linear, partially linear, or nonlinear. In particular, functional polynomial models, functional single and multiple index models and functional additive models are three special cases of functional nonlinear models.

__TOC__

Functional linear models (FLMs)

Functional linear models (FLMs) are an extension of linear models (LMs). A linear model with scalar response Y\in\mathbb{R} and scalar covariates X\in\mathbb{R}^p can be written as

{{NumBlk|::|Y = \beta_0 + \langle X,\beta\rangle + \varepsilon,|{{EquationRef|1}}}}

where \langle\cdot,\cdot\rangle denotes the inner product in Euclidean space, \beta_0\in\mathbb{R} and \beta\in\mathbb{R}^p denote the regression coefficients, and \varepsilon is a random error with mean zero and finite variance. FLMs can be divided into two types based on the responses.

= Functional linear models with scalar responses =

Functional linear models with scalar responses can be obtained by replacing the scalar covariates X and the coefficient vector \beta in model ({{EquationNote|1}}) by a centered functional covariate X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot)) and a coefficient function \beta = \beta(\cdot) with domain \mathcal{T}, respectively, and replacing the inner product in Euclidean space by that in Hilbert space L^2,

{{NumBlk|::|Y = \beta_0 + \langle X^c, \beta\rangle +\varepsilon = \beta_0 + \int_\mathcal{T} X^c(t)\beta(t)\,dt + \varepsilon,|{{EquationRef|2}}}}

where \langle \cdot, \cdot \rangle here denotes the inner product in L^2. One approach to estimating \beta_0 and \beta(\cdot) is to expand the centered covariate X^c(\cdot) and the coefficient function \beta(\cdot) in the same functional basis, for example, B-spline basis or the eigenbasis used in the Karhunen–Loève expansion. Suppose \{\phi_k\}_{k=1}^\infty is an orthonormal basis of L^2. Expanding X^c and \beta in this basis, X^c(\cdot) = \sum_{k=1}^\infty x_k \phi_k(\cdot), \beta(\cdot) = \sum_{k=1}^\infty \beta_k \phi_k(\cdot), model ({{EquationNote|2}}) becomes

Y = \beta_0 + \sum_{k=1}^\infty \beta_k x_k +\varepsilon.

For implementation, regularization is needed and can be done through truncation, L^2 penalization or L^1 penalization.{{cite journal|doi=10.1146/annurev-statistics-010814-020413|title=Functional Regression|year=2015|last1=Morris|first1=Jeffrey S.|journal=Annual Review of Statistics and Its Application|volume=2|issue=1|pages=321–359|arxiv=1406.4068|bibcode=2015AnRSA...2..321M|s2cid=18637009}} In addition, a reproducing kernel Hilbert space (RKHS) approach can also be used to estimate \beta_0 and \beta(\cdot) in model ({{EquationNote|2}})Yuan and Cai (2010). "A reproducing kernel Hilbert space approach to functional linear regression". The Annals of Statistics. 38 (6):3412–3444. doi:[http://doi.org/10.1214/09-AOS772 10.1214/09-AOS772].

Adding multiple functional and scalar covariates, model ({{EquationNote|2}}) can be extended to

{{NumBlk|::|Y = \sum_{k=1}^q Z_k\alpha_k + \sum_{j=1}^p \int_{\mathcal{T}_j} X_j^c(t) \beta_j(t) \,dt + \varepsilon,|{{EquationRef|3}}}}

where Z_1,\ldots,Z_q are scalar covariates with Z_1=1, \alpha_1,\ldots,\alpha_q are regression coefficients for Z_1,\ldots,Z_q, respectively, X^c_j is a centered functional covariate given by X_j^c(\cdot) = X_j(\cdot) - \mathbb{E}(X_j(\cdot)), \beta_j is regression coefficient function for X_j^c(\cdot), and \mathcal{T}_j is the domain of X_j and \beta_j, for j=1,\ldots,p. However, due to the parametric component \alpha, the estimation methods for model ({{EquationNote|2}}) cannot be used in this case{{cite journal|doi=10.1146/annurev-statistics-041715-033624|title=Functional Data Analysis|year=2016|last1=Wang|first1=Jane-Ling|last2=Chiou|first2=Jeng-Min|last3=Müller|first3=Hans-Georg|journal=Annual Review of Statistics and Its Application|volume=3|issue=1|pages=257–295|bibcode=2016AnRSA...3..257W|url=https://zenodo.org/record/895750|doi-access=free}} and alternative estimation methods for model ({{EquationNote|3}}) are available.{{Cite journal |last=Kong |first=Dehan |last2=Xue |first2=Kaijie |last3=Yao |first3=Fang |last4=Zhang |first4=Hao H. |date= |title=Partially functional linear regression in high dimensions |url=https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asv062 |journal=Biometrika |language=en |volume=103 |issue=1 |pages=147–159 |doi=10.1093/biomet/asv062 |issn=0006-3444}}{{Cite journal |last=Hu |first=Z. |date=2004-06-01 |title=Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data |url=https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/91.2.251 |journal=Biometrika |language=en |volume=91 |issue=2 |pages=251–262 |doi=10.1093/biomet/91.2.251 |issn=0006-3444|url-access=subscription }}

= Functional linear models with functional responses =

For a functional response Y(\cdot) with domain \mathcal{T} and a functional covariate X(\cdot) with domain \mathcal{S}, two FLMs regressing Y(\cdot) on X(\cdot) have been considered.Ramsay and Silverman (2005). Functional data analysis, 2nd ed., New York: Springer, {{ISBN|0-387-40080-X}}. One of these two models is of the form

{{NumBlk|::|Y(t) = \beta_0(t) + \int_{\mathcal{S}} \beta(s,t) X^c(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},|{{EquationRef|4}}}}

where X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot)) is still the centered functional covariate, \beta_0(\cdot) and \beta(\cdot,\cdot) are coefficient functions, and \varepsilon(\cdot) is usually assumed to be a random process with mean zero and finite variance. In this case, at any given time t\in\mathcal{T}, the value of Y, i.e., Y(t), depends on the entire trajectory of X. Model ({{EquationNote|4}}), for any given time t, is an extension of multivariate linear regression with the inner product in Euclidean space replaced by that in L^2. An estimating equation motivated by multivariate linear regression is

r_{XY} = R_{XX}\beta, \text{ for } \beta\in L^2(\mathcal{S}\times\mathcal{S}),

where r_{XY}(s,t) = \text{cov}(X(s),Y(t)), R_{XX}: L^2(\mathcal{S}\times\mathcal{S}) \rightarrow L^2(\mathcal{S}\times\mathcal{T}) is defined as (R_{XX}\beta)(s,t) = \int_\mathcal{S} r_{XX}(s,w)\beta(w,t)dw with r_{XX}(s,w) = \text{cov}(X(s),X(w)) for s,w\in\mathcal{S}. Regularization is needed and can be done through truncation, L^2 penalization or L^1 penalization. Various estimation methods for model ({{EquationNote|4}}) are available.{{Cite journal |last=Ramsay |first=J. O. |last2=Dalzell |first2=C. J. |date=1991 |title=Some Tools for Functional Data Analysis |url=https://www.jstor.org/stable/2345586 |journal=Journal of the Royal Statistical Society. Series B (Methodological) |volume=53 |issue=3 |pages=539–572 |issn=0035-9246}}{{Cite journal |last=Yao |first=Fang |last2=Müller |first2=Hans-Georg |last3=Wang |first3=Jane-Ling |date= |title=Functional linear regression analysis for longitudinal data |url=https://projecteuclid.org/journals/annals-of-statistics/volume-33/issue-6/Functional-linear-regression-analysis-for-longitudinal-data/10.1214/009053605000000660.full |journal=The Annals of Statistics |volume=33 |issue=6 |pages=2873–2903 |doi=10.1214/009053605000000660 |issn=0090-5364|arxiv=math/0603132 }}

When X and Y are concurrently observed, i.e., \mathcal{S}=\mathcal{T},{{Cite journal |last=Grenander |first=Ulf |date= |title=Stochastic processes and statistical inference |url=https://projecteuclid.org/journals/arkiv-for-matematik/volume-1/issue-3/Stochastic-processes-and-statistical-inference/10.1007/BF02590638.full |journal=Arkiv för Matematik |volume=1 |issue=3 |pages=195–277 |doi=10.1007/BF02590638 |issn=0004-2080}} it is reasonable to consider a historical functional linear model, where the current value of Y only depends on the history of X, i.e., \beta(s,t)=0 for s>t in model ({{EquationNote|4}}).{{Cite journal |last=Malfait |first=Nicole |last2=Ramsay |first2=James O. |date=2003 |title=The historical functional linear model |url=https://onlinelibrary.wiley.com/doi/10.2307/3316063 |journal=Canadian Journal of Statistics |language=en |volume=31 |issue=2 |pages=115–128 |doi=10.2307/3316063 |issn=1708-945X|url-access=subscription }} A simpler version of the historical functional linear model is the functional concurrent model (see below).

Adding multiple functional covariates, model ({{EquationNote|4}}) can be extended to

{{NumBlk|::|Y(t) = \beta_0(t) + \sum_{j=1}^p\int_{\mathcal{S}_j} \beta_j(s,t) X^c_j(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},|{{EquationRef|5}}}}

where for j=1,\ldots,p, X_j^c(\cdot)=X_j(\cdot) - \mathbb{E}(X_j(\cdot)) is a centered functional covariate with domain \mathcal{S}_j, and \beta_j(\cdot,\cdot) is the corresponding coefficient function with the same domain, respectively. In particular, taking X_j(\cdot) as a constant function yields a special case of model ({{EquationNote|5}})

Y(t) = \sum_{j=1}^p X_j \beta_j(t) + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},

which is a FLM with functional responses and scalar covariates.

== Functional concurrent models ==

Assuming that \mathcal{S} = \mathcal{T}, another model, known as the functional concurrent model, sometimes also referred to as the varying-coefficient model, is of the form

{{NumBlk|::|Y(t) = \alpha_0(t) + \alpha(t)X(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},|{{EquationRef|6}}}}

where \alpha_0 and \alpha are coefficient functions. Note that model ({{EquationNote|6}}) assumes the value of Y at time t, i.e., Y(t), only depends on that of X at the same time, i.e., X(t). Various estimation methods can be applied to model ({{EquationNote|6}}).{{Cite journal |last=Fan |first=Jianqing |last2=Zhang |first2=Wenyang |date= |title=Statistical estimation in varying coefficient models |url=https://projecteuclid.org/journals/annals-of-statistics/volume-27/issue-5/Statistical-estimation-in-varying-coefficient-models/10.1214/aos/1017939139.full |journal=The Annals of Statistics |volume=27 |issue=5 |pages=1491–1518 |doi=10.1214/aos/1017939139 |issn=0090-5364}}{{Cite journal |last=Huang |first=Jianhua Z. |last2=Wu |first2=Colin O. |last3=Zhou |first3=Lan |date=2004 |title=Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data |url=https://www.jstor.org/stable/24307415 |journal=Statistica Sinica |volume=14 |issue=3 |pages=763–788 |issn=1017-0405}}{{Cite journal |last=Şentürk |first=Damla |last2=Müller |first2=Hans-Georg |date=2010-09-01 |title=Functional Varying Coefficient Models for Longitudinal Data |url=https://www.tandfonline.com/doi/abs/10.1198/jasa.2010.tm09228 |journal=Journal of the American Statistical Association |doi=10.1198/jasa.2010.tm09228 |issn=0162-1459}}

Adding multiple functional covariates, model ({{EquationNote|6}}) can also be extended to

Y(t) = \alpha_0(t) + \sum_{j=1}^p\alpha_j(t)X_j(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},

where X_1,\ldots,X_p are multiple functional covariates with domain \mathcal{T} and \alpha_0,\alpha_1,\ldots,\alpha_p are the coefficient functions with the same domain.

Functional nonlinear models

= Functional polynomial models =

Functional polynomial models are an extension of the FLMs with scalar responses, analogous to extending linear regression to polynomial regression. For a scalar response Y and a functional covariate X(\cdot) with domain \mathcal{T}, the simplest example of functional polynomial models is functional quadratic regression{{Cite journal |last=Yao |first=F. |last2=Muller |first2=H.-G. |date=2010-03-01 |title=Functional quadratic regression |url=https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asp069 |journal=Biometrika |language=en |volume=97 |issue=1 |pages=49–64 |doi=10.1093/biomet/asp069 |issn=0006-3444|url-access=subscription }}

Y = \alpha + \int_\mathcal{T}\beta(t)X^c(t)\,dt + \int_\mathcal{T} \int_\mathcal{T} \gamma(s,t) X^c(s)X^c(t) \,ds\,dt + \varepsilon,

where X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot)) is the centered functional covariate, \alpha is a scalar coefficient, \beta(\cdot) and \gamma(\cdot,\cdot) are coefficient functions with domains \mathcal{T} and \mathcal{T}\times\mathcal{T}, respectively, and \varepsilon is a random error with mean zero and finite variance. By analogy to FLMs with scalar responses, estimation of functional polynomial models can be obtained through expanding both the centered covariate X^c and the coefficient functions \beta and \gamma in an orthonormal basis.

= Functional single and multiple index models =

A functional multiple index model is given by

Y = g\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt, \ldots, \int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \varepsilon.

Taking p=1 yields a functional single index model. However, for p>1, this model is problematic due to curse of dimensionality. With p>1 and relatively small sample sizes, the estimator given by this model often has large variance.{{Cite journal |last=Chen |first=Dong |last2=Hall |first2=Peter |last3=Müller |first3=Hans-Georg |date= |title=Single and multiple index functional regression models with nonparametric link |url=https://projecteuclid.org/journals/annals-of-statistics/volume-39/issue-3/Single-and-multiple-index-functional-regression-models-with-nonparametric-link/10.1214/11-AOS882.full |journal=The Annals of Statistics |volume=39 |issue=3 |pages=1720–1747 |doi=10.1214/11-AOS882 |issn=0090-5364|arxiv=1211.5018 }} An alternative p-component functional multiple index model can be expressed as

Y = g_1\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt\right)+ \cdots+ g_p\left(\int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \varepsilon.

Estimation methods for functional single and multiple index models are available.{{Cite journal |last=Jiang |first=Ci-Ren |last2=Wang |first2=Jane-Ling |date= |title=Functional single index models for longitudinal data |url=https://projecteuclid.org/journals/annals-of-statistics/volume-39/issue-1/Functional-single-index-models-for-longitudinal-data/10.1214/10-AOS845.full |journal=The Annals of Statistics |volume=39 |issue=1 |pages=362–388 |doi=10.1214/10-AOS845 |issn=0090-5364|arxiv=1103.1726 }}

= Functional additive models (FAMs) =

Given an expansion of a functional covariate X with domain \mathcal{T} in an orthonormal basis \{\phi_k\}_{k=1}^\infty: X(t) = \sum_{k=1}^\infty x_k \phi_k(t), a functional linear model with scalar responses shown in model ({{EquationNote|2}}) can be written as

\mathbb{E}(Y|X)=\mathbb{E}(Y) + \sum_{k=1}^\infty \beta_k x_k.

One form of FAMs is obtained by replacing the linear function of x_k, i.e., \beta_k x_k, by a general smooth function f_k,

\mathbb{E}(Y|X)=\mathbb{E}(Y) + \sum_{k=1}^\infty f_k(x_k),

where f_k satisfies \mathbb{E}(f_k(x_k))=0 for k\in\mathbb{N}.{{Cite journal |last=Müller |first=Hans-Georg |last2=Yao |first2=Fang |date=2008-12-01 |title=Functional Additive Models |url=https://www.tandfonline.com/doi/abs/10.1198/016214508000000751 |journal=Journal of the American Statistical Association |doi=10.1198/016214508000000751 |issn=0162-1459|url-access=subscription }} Another form of FAMs consists of a sequence of time-additive models:

\mathbb{E}(Y|X(t_1),\ldots,X(t_p))=\sum_{j=1}^p f_j(X(t_j)),

where \{t_1,\ldots,t_p\} is a dense grid on \mathcal{T} with increasing size p\in\mathbb{N}, and f_j(x) = g(t_j,x) with g a smooth function, for j=1,\ldots,p{{Cite journal |last=Fan |first=Yingying |last2=James |first2=Gareth M. |last3=Radchenko |first3=Peter |date= |title=Functional additive regression |url=https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-5/Functional-additive-regression/10.1214/15-AOS1346.full |journal=The Annals of Statistics |volume=43 |issue=5 |pages=2296–2325 |doi=10.1214/15-AOS1346 |issn=0090-5364|arxiv=1510.04064 }}

Extensions

A direct extension of FLMs with scalar responses shown in model ({{EquationNote|2}}) is to add a link function to create a generalized functional linear model (GFLM) by analogy to extending linear regression to generalized linear regression (GLM), of which the three components are:

  1. Linear predictor \eta = \beta_0 + \int_{\mathcal{T}} X^c(t)\beta(t)\,dt;
  2. Variance function \text{Var}(Y|X) = V(\mu), where \mu = \mathbb{E}(Y|X) is the conditional mean;
  3. Link function g connecting the conditional mean and the linear predictor through \mu=g(\eta).

See also

References