GG Tauri

{{Short description|Star in the constellation Taurus}}

{{Starbox begin|name=GG Tauri}}

{{Starbox image

| image = 260px

| caption = Artist's impression of the disk surrounding GG Tauri A

| credit = ESO/L. Calçada

}}

{{Starbox observe 3s

| epoch = J2000

| constell = Taurus

| component1 = GG Tauri A

| ra1 = {{RA|04|32|30.31}}{{cite simbad|title=** LEI 3Aa|access-date=10 February 2017}}

| dec1 = {{DEC|+17|31|41.0}}

| appmag_v1 = 12.25 ± 0.03 / 14.70 ± 0.06

| component2 = GG Tauri Ba

| ra2 = {{RA|04|32|30.25}}{{cite simbad|title=** LEI 3Ba|access-date=10 February 2017}}

| dec2 = {{DEC|+17|31|30.9}}

| appmag_v2 = 17.11 ± 0.07

| component3 = GG Tauri Bb

| ra3 = {{RA|04|32|30.31}}{{cite simbad|title=** LEI 3Bb|access-date=10 February 2017}}

| dec3 = {{DEC|+17|31|29.9}}

| appmag_v3 = 19.94 ± 0.08

}}

{{Starbox character

| class = K7 / M2 / M3 / M5 / M7

| b-v = +1.38{{cite journal|title=On the colors of T Tauri stars and related objects|author=Smak, J.|journal=Astrophysical Journal|volume=139|page=1095|date=1964|bibcode=1964ApJ...139.1095S|doi=10.1086/147851}}

| u-b = +0.06

| variable = T Tauri

}}

{{Starbox astrometry

|radial_v=12.0{{cite journal|title=Bright-Line Stars among the Taurus Dark Clouds|author=Joy, Alfred H.|journal=Astrophysical Journal|volume=110|page=424|date=1949|bibcode=1949ApJ...110..424J|doi=10.1086/145217}}Accessed using SIMBAD.

|prop_mo_ra=15.6{{cite journal|title=VizieR Online Data Catalog: The Second U.S. Naval Observatory CCD Astrograph Catalog (UCAC2)|author1=Zacharias, N.|author2=Urban, S. E.|author3=Zacharias, M. I.|author4=Wycoff, G. L.|author5=Hall, D. M.|author6=Germain, M. E.|author7=Holdenried, E. R.|author8=Winter, L.|date=2003|journal=CDS/ADC Collection of Electronic Catalogues|bibcode=2003yCat.1289....0Z}}Accessed using SIMBAD.

|prop_mo_dec=-21.1

|dist_ly=450

|dist_pc=140{{cite journal|title=High resolution imaging of the GG Tauri system at 267 GHz|author1=Piétu, V.|author2=Gueth, F.|author3=Hily-Blant, P.|author4=Schuster, K.-F.|author5=Pety, J.|journal=Astronomy & Astrophysics|year=2011|volume=582|pages=A81|bibcode=2011A&A...528A..81P|doi=10.1051/0004-6361/201015682|arxiv=1102.4029|s2cid=118589049}}

}}

{{Starbox orbit

|reference={{cite journal|title=The orbit of GG Tauri A|author=Köhler, R.|journal=Astronomy & Astrophysics|volume=530|date=2011|pages=A126|bibcode=2011A&A...530A.126K|doi=10.1051/0004-6361/201016327|arxiv=1104.2245}} Note: "most plausible orbit" is given in the starbox above.

{{cite journal |last1=Keppler |first1=M. |last2=Penzlin |first2=A. |last3=Benisty |first3=M. |last4=van Boekel |first4=R. |last5=Henning |first5=T. |last6=van Holstein |first6=R. G. |last7=Kley |first7=W. |last8=Garufi |first8=A. |last9=Ginski |first9=C. |last10=Brandner |first10=W. |last11=Bertrang |first11=G. H.-M. |last12=Boccaletti |first12=A. |last13=de Boer |first13=J. |last14=Bonavita |first14=M. |last15=Brown Sevilla |first15=S. |last16=Chauvin |first16=G. |last17=Dominik |first17=C. |last18=Janson |first18=M. |last19=Langlois |first19=M. |last20=Lodato |first20=G. |last21=Maire |first21=A.-L. |last22=Ménard |first22=F. |last23=Pantin |first23=E. |last24=Pinte |first24=C. |last25=Stolker |first25=T. |last26=Szulágyi |first26=J. |last27=Thebault |first27=P. |last28=Villenave |first28=M. |last29=Zurlo |first29=A. |last30=Rabou |first30=P. |last31=Feautrier |first31=P. |last32=Feldt |first32=M. |last33=Madec |first33=F. |last34=Wildi |first34=F. |title=Gap, shadows, spirals, and streamers: SPHERE observations of binary-disk interactions in GG Tauri A |journal=Astronomy & Astrophysics |date=July 2020 |volume=639 |pages=A62 |doi=10.1051/0004-6361/202038032|arxiv=2005.09037 |bibcode=2020A&A...639A..62K |s2cid=218684431 |doi-access=free }}

|primary=GG Tau Aa

|name=GG Tau Ab

|period={{val|162|+62|-15}}

|axis_unitless=243 mas
(34 AU)

|eccentricity={{val|0.28|+0.05|-0.14}}

|inclination=143

|node={{val|277|+2|-2}}

|periarg={{val|91|+4|-13}}

|periastron={{val|2463400|+1470|-5420}}

}}

{{Starbox detail

|component1=GG Tau Aa

|mass=0.78 ± 0.09

|radius=1.63 {{cite web | url=https://exoplanet.eu/catalog/gg_tau_ae--10014/ | title=Planet GG Tau Ae | date=2023 }}

|luminosity=0.38

|age_myr=1.5

|temperature=3700

|component2=GG Tau Ab

|mas=0.68 ± 0.02

|luminosity2=0.133 + 0.067

|age_myr2=1.5

|temperature2=3300 + 3100

}}

{{Starbox detail|no_heading=y

|component1=GG Tau Ba

|mass=0.12 ± 0.02

|radius=1.45 https://exoplanet.eu/catalog/gg_tau_bb--7904/ https://iopscience.iop.org/article/10.3847/1538-4357/ab7ead

|luminosity=0.096

|age_myr=1.5

|component2=GG Tauri Bb

|mass2=0.04 ± 0.003

|radius2=0.497 {{cite web | url=https://exoplanet.eu/catalog/gg_tau_bb--7904/ | title=Planet GG Tau Bb | date=2020 }}

|luminosity2=0.015

|age_myr2=1.5

}}

{{Starbox catalog

|names=GG Tau, WDS J04325+1732, {{nowrap|TYC 1270-897-1}}{{cite simbad|title=V* GG Tau|access-date=11 February 2017}}

}}

{{Starbox reference

|Simbad=GG+Tau

}}

{{Starbox end}}

GG Tauri, often abbreviated as GG Tau, is a quintuple star system in the constellation Taurus. At a distance of about 450 light years (140 parsecs) away, it is located within the Taurus-Auriga Star Forming Region. The system comprises three stars orbiting each other in a hierarchical triple system, known as GG Tauri A, and another binary star system more distant from the central system, known as GG Tauri B.{{cite web|url=http://www.sci-news.com/astronomy/science-ezekiels-wheel-in-wheel-binary-system-gg-tauri-a-02241.html|title=Astronomers Examine Ezekiel-like 'Wheel in a Wheel' in Binary System GG Tauri-A|date=30 October 2014|work=Sci-News.com|access-date=10 February 2017}}

The system is unusual because it contains two distinct circumstellar disks: one surrounding the entirety of GG Tauri A, and another surrounding the brightest star of GG Tauri A. Its large size and close distance make it ideal to study how exoplanets form within multiple star systems.{{cite journal|doi=10.1007/s00159-015-0091-5|title=GG Tau: The ringworld and beyond|year=2016|last1=Dutrey|first1=Anne|last2=Di Folco|first2=Emmanuel|last3=Beck|first3=Tracy|last4=Guilloteau|first4=Stéphane|journal=The Astronomy and Astrophysics Review|volume=24|s2cid=123210114}}

Properties

File:GGTauLightCurve.png light curve for GG Tauri, adapted from Bouvier et al. (1993)]]

GG Tauri consists of five stars, which are T Tauri stars – a class of variable stars that show irregular changes in brightness.{{cite web|url=http://astronomy.swin.edu.au/cosmos/T/T+Tauri+Stars|title=T Tauri Stars | COSMOS|access-date=11 February 2017}} These stars are extremely young and more luminous than their main sequence counterparts, because they have not condensed into the normal size yet. The four components of GG Tauri stars are relatively cool K-type or M-type stars, with these spectral types: K7 for GG Tauri Aa, M0.5 for GG Tauri Ab, M5 for GG Tauri Ba, and M7 for GG Tauri Bb;{{cite journal|title=A Test of Pre-Main-Sequence Evolutionary Models across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tauri|author1=White, Russel J.|author2=Ghez, A. M.|author3=Reid, I. Neill|author4=Schultz, Greg|date=1999|journal=The Astrophysical Journal|volume=520|issue=2|pages=811–821|bibcode=1999ApJ...520..811W|doi=10.1086/307494|arxiv=astro-ph/9902318|s2cid=16100123}} the age of the system is estimated to be 1.5 million years.

A dynamical study of the system found the masses of the four components to be: {{solar mass|0.78}} for GG Tauri Aa, {{solar mass|0.68}} for GG Tauri Ab, {{solar mass|0.12}} for GG Tauri Ba, and {{solar mass|0.04}} for GG Tauri Bb. At {{solar mass|0.04}}, GG Tauri Bb has a substellar mass and is a brown dwarf.{{cite journal|title=Dynamics of the young multiple system GG Tauri. I. Orbital fits and inner edge of the circumbinary disk of GG Tau A|author1=Beust, H.|author2=Dutrey, A.|journal=Astronomy and Astrophysics|volume=439|issue=2|pages=585–594|date=2005|bibcode=2005A&A...439..585B|doi=10.1051/0004-6361:20042441|doi-access=free}} Orbital motion has been detected in the central system (Aa and Ab), but not in the outer pair Ba and Bb (as its orbital period is too long).

A preliminary orbit for GG Tauri Aa and Ab has been calculated, but is not very well constrained. The orbit is moderately eccentric;{{cite journal|bibcode=2018MNRAS.480.4738A|title=On the secular evolution of GG Tau A circumbinary disc: A misaligned disc scenario|last1=Aly|first1=Hossam|last2=Lodato|first2=Giuseppe|last3=Cazzoletti|first3=Paolo|journal=Monthly Notices of the Royal Astronomical Society|year=2018|volume=480|issue=4|page=4738|doi=10.1093/mnras/sty2179|doi-access=free |arxiv=1809.06383}} Some studies have determined that their orbit has a semimajor axis of about 34 au and is misaligned to the circumbinary disk by about 25 degrees. However, other studies have found the orbit to be coplanar to the circumbinary disk, with a larger semimajor axis of about 60 au.

Interferometric techniques have been used to observe GG Tauri Ab, the lower-mass component of the central system. GG Tauri Ab was found to be a binary star system comprising two red dwarfs (Ab1 = M2V, Ab2 = M3V), with a separation of about 4.5 AU. Its orbital period is currently estimated to be around 16 years. This would explain why the GG Tauri Ab's spectrum suggests an unusually low-mass star instead of the higher mass that was measured.{{cite journal|title=GG Tauri: the fifth element|author1=Di Folco, E.|author2=Dutrey, A.|author3=Le Bouquin, J.-B.|author4=Lacour, S.|author5=Berger, J.-P.|author6=Köhler, R.|author7=Guilloteau, S.|author8=Piétu, V.|author9=Bary, J.|author10=Beck, T.|author11=Beust, H.|author12=Pantin, E.|journal=Astronomy & Astrophysics|volume=565|issue=2|date=2014|pages=L2|bibcode=2014A&A...565L...2D|doi=10.1051/0004-6361/201423675|arxiv=1404.2205|s2cid=119226957}}

Because of interactions with GG Tauri A, the outer pair GG Tauri Ba and Bb are not very stable. The internal orbit of GG Tauri Ba and Bb must be retrograde relative to its whole orbit around GG Tauri A, in order to be stable.{{cite journal|bibcode=2006A&A...446..137B|doi=10.1051/0004-6361:20053163|title=Dynamics of the young multiple system GG Tauri. II. Relation between the stellar system and the circumbinary disk|year=2006 |last1=Beust |first1=H. |last2=Dutrey |first2=A. |journal=Astronomy & Astrophysics |volume=446 |issue=1 |pages=137–154 |s2cid=121583375 |doi-access=free }}

Circumstellar disks

File:Artist’s impression of the double-star system GG Tauri-A (Vid).ogv

T Tauri stars are usually surrounded by circumstellar disks of gas and dust. These disks coalesce into protoplanets and then into planets.

The subsystem GG Tauri A has a large, circumbinary (technically circumtrinary) disk. Within the disk, GG Tauri Aa also has a disk, and furthermore, at least one of the Ab stars must have a disk as well. The latter is inferred from the presence of a "gap" in the largest disk, detected at the three-o'clock position, at a position angle of about 268°. First seen in 2002,{{cite journal|title=Hubble Space Telescope/WFPC2 Images of the GG Tauri Circumbinary Disk|author1=Krist, John E.|author2=Stapelfeldt, Karl R.|author3=Watson, Alan M.|journal=The Astrophysical Journal|volume=570|issue=2|pages=785–792|date=2002|bibcode=2002ApJ...570..785K|doi=10.1086/339777|arxiv=astro-ph/0201415|s2cid=8478005}} it is interpreted as a shadow because it does not rotate with the disk.{{cite journal|bibcode=2019A&A...628A..88B|doi=10.1051/0004-6361/201935966|title=GG Tauri A: Dark shadows on the ringworld|year=2019|last1=Brauer|first1=R.|last2=Pantin|first2=E.|last3=Di Folco|first3=E.|last4=Habart|first4=E.|last5=Dutrey|first5=A.|last6=Guilloteau|first6=S.|journal=Astronomy & Astrophysics|volume=628|pages=A88|arxiv=1906.11582 |s2cid=195699759}} Interstellar material blocks the light from part of the disk, causing this shadow.{{cite journal|title=HST/ACS Images of the GG Tauri Circumbinary Disk|author1=Krist, J. E.|author2=K. R. Stapelfeldt|author3=Golimowski, D. A.|author4=Ardila, D. R.|author5=Clampin, M.|author6=Martel, A. R.|author7=Ford, H. C.|author8=Illingworth, G. D.|author9=Hartig, G. F.|journal=The Astronomical Journal|publisher=American Astronomical Society|year=2002|volume=34|page=1319|bibcode=2002AAS...20113601K|doi=10.1086/497069|arxiv=astro-ph/0508222|s2cid=117225052}} The Aa and Ab rings are coplanar to each other.

The disk around GG Tauri Aa has a mass of about {{solar mass|0.1}}, or about the mass of Jupiter,{{cite journal|title=The long-wavelength view of GG Tau A: rocks in the ring world|author=Scaife, Anna M. M.|journal=Monthly Notices of the Royal Astronomical Society|volume=435|issue=2|pages=1139–1146|date=2013|bibcode=2013MNRAS.435.1139S|doi=10.1093/mnras/stt1361|doi-access=free |arxiv=1307.5146|s2cid=53062598}} at a temperature of about 20 to 30 K.{{cite journal|title=Resolved Multifrequency Radio Observations of GG Tau|author1=Andrews, Sean M.|display-authors=etal|journal=The Astrophysical Journal|volume=787|issue=2|date=2014|page=148|bibcode=2014ApJ...787..148A|doi=10.1088/0004-637X/787/2/148|arxiv=1404.5652|s2cid=59520166}} GG Tauri Aa appears to have a jet coming out from the poles, as evidenced by forbidden Fe II lines.

Mass is currently accreting from the inner disks into the stars themselves. Because the disks have not been consumed yet, the larger, circumbinary disk must be supplying mass into the smaller disks. Several lines of evidence point to this. Firstly, a search for diatomic hydrogen gas (H2) could be found up to 100 AU away from the center of the system, but significant emission was also detected 30 au away. This emission was detected where a previous survey found gas streaming from the outer disk to the inner disk, so it was assumed that the emission resulted from mass falling from the inner disk to the outer disk.{{cite journal|title=Circumbinary Gas Accretion onto a Central Binary: Infrared Molecular Hydrogen Emission from GG Tau A|author1=Beck, Tracy L.|author2=Bary, Jeffrey S.|author3=Dutrey, Anne|author4=Piétu, Vincent|author5=Guilloteau, Stéphane|author6=Lubow, S. H.|author7=Simon, M.|journal=The Astrophysical Journal|volume=754|issue=1|date=2012|page=72|bibcode=2012ApJ...754...72B|doi=10.1088/0004-637X/754/1/72|arxiv=1205.1526|s2cid=119306325}} Observations taken in 2014 showed similar results. Secondly, near-infrared polarimetry of the area showed the same structure connecting the inner and outer disks. The stars of GG Tauri A are closer to the ring on the northern side (where the streamer is) than the southern side. Finally, although there is not much gas falling into the inner disks, the accretion rate of gas has been measured to be ~{{solar mass|{{val|6e-8}}}} yr−1 which is at least the rate of accretion from the inner disks to the stars themselves. Therefore, the outer disk provides enough mass to replenish the inner disks.{{cite journal|bibcode=2020A&A...635A..12P|doi=10.1051/0004-6361/201936173|title=GG Tauri A: Gas properties and dynamics from the cavity to the outer disk|year=2020|last1=Phuong|first1=N. T.|last2=Dutrey|first2=A.|last3=Diep|first3=P. N.|last4=Guilloteau|first4=S.|last5=Chapillon|first5=E.|last6=Di Folco|first6=E.|last7=Tang|first7=Y.-W.|last8=Piétu|first8=V.|last9=Bary|first9=J.|last10=Beck|first10=T.|last11=Hersant|first11=F.|last12=Hoai|first12=D. T.|last13=Huré|first13=J. M.|last14=Nhung|first14=P. T.|last15=Pierens|first15=A.|last16=Tuan-Anh|first16=P.|journal=Astronomy & Astrophysics|volume=635|pages=A12|arxiv=2001.08147 |s2cid=210859248}}

=Possible protoplanets=

At the edge of the outer disk, there is a "hot spot" with additional gas, and at a higher temperature of about 40 K. There are also spiral-shaped formations within the disk.{{cite journal|bibcode=2020A&A...635L...9P|doi=10.1051/0004-6361/202037682|title=Planet-induced spirals in the circumbinary disk of GG Tauri A|year=2020|last1=Phuong|first1=N. T.|last2=Dutrey|first2=A.|last3=Di Folco|first3=E.|last4=Guilloteau|first4=S.|last5=Pierens|first5=A.|last6=Bary|first6=J.|last7=Beck|first7=T. L.|last8=Chapillon|first8=E.|last9=Denis-Alpizar|first9=O.|last10=Diep|first10=P. N.|last11=Majumdar|first11=L.|last12=Piétu|first12=V.|last13=Tang|first13=Y.-W.|journal=Astronomy & Astrophysics|volume=635|pages=L9|s2cid=216250218|doi-access=free}} At the center of this "hot spot" may be a protoplanet termed GG Tauri Ac, which is still accreting mass. This would explain the higher gas density and temperature, as well as the spiral formations. If it exists, it would likely be about the mass of Neptune or smaller, given that it has not cleared out a gap at its location. Other planets could explain other spiral features within the disk.

=Chemistry=

The chemistry of circumstellar disks is important for understanding planetary formation. The inner disk, like other protoplanetary disks, is rich in simple molecules containing elements such as carbon and sulfur. In 2018, hydrogen sulfide ({{chem|H|2|S}}) was reported,{{cite journal|bibcode=2018A&A...616L...5P|title=First detection of H2S in a protoplanetary disk. The dense GG Tauri a ring|last1=Phuong|first1=N. T.|last2=Chapillon|first2=E.|last3=Majumdar|first3=L.|last4=Dutrey|first4=A.|last5=Guilloteau|first5=S.|last6=Piétu|first6=V.|last7=Wakelam|first7=V.|last8=Diep|first8=P. N.|last9=Tang|first9=Y. -W.|last10=Beck|first10=T.|last11=Bary|first11=J.|journal=Astronomy and Astrophysics|year=2018|volume=616|doi=10.1051/0004-6361/201833766|arxiv=1808.00652|s2cid=119195624}} and in 2021, thioxoethenylidene (CCS) was reported to exist within the disk. Both are the first instances of those species known in a protoplanetary disk.{{cite journal|bibcode=2021A&A...653L...5P|title=An unbiased NOEMA 2.6 to 4 mm survey of the GG Tau ring: First detection of CCS in a protoplanetary disk|last1=Phuong|first1=N. T.|last2=Dutrey|first2=A.|last3=Chapillon|first3=E.|last4=Guilloteau|first4=S.|last5=Bary|first5=J.|last6=Beck|first6=T. L.|last7=Coutens|first7=A.|last8=Denis-Alpizar|first8=O.|last9=Di Folco|first9=E.|last10=Diep|first10=P. N.|last11=Majumdar|first11=L.|last12=Melisse|first12=J. -P.|last13=Lee|first13=C. -W.|last14=Pietu|first14=V.|last15=Stoecklin|first15=T.|last16=Tang|first16=Y. -W.|journal=Astronomy and Astrophysics|year=2021|volume=653|pages=L5|doi=10.1051/0004-6361/202141881|arxiv=2109.01979|s2cid=237420449}} The chemical mechanisms related to their formation are not very well understood.

See also

References

{{reflist|30em|refs=

{{cite journal |last1=Bouvier |first1=J. |last2=Cabrit |first2=S. |last3=Fernandez |first3=M. |last4=Martin |first4=E. L. |last5=Matthews |first5=J. M. |title=COYOTES I : the photometric variability and rotational evolution of T Tauri stars |journal=Astronomy and Astrophysics |date=May 1993 |volume=272 |pages=176–206 |bibcode=1993A&A...272..176B |url=https://ui.adsabs.harvard.edu/abs/1993A&A...272..176B |access-date=30 March 2022}}

{{cite journal|bibcode=2017AJ....153....7Y|doi=10.3847/1538-3881/153/1/7|title=Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk|year=2016|last1=Yang|first1=Yi|last2=Hashimoto|first2=Jun|last3=Hayashi|first3=Saeko S.|last4=Tamura|first4=Motohide|last5=Mayama|first5=Satoshi|last6=Rafikov|first6=Roman|last7=Akiyama|first7=Eiji|last8=Carson|first8=Joseph C.|last9=Janson|first9=Markus|last10=Kwon|first10=Jungmi|last11=De Leon|first11=Jerome|last12=Oh|first12=Daehyeon|last13=Takami|first13=Michihiro|last14=Tang|first14=Ya-wen|last15=Kudo|first15=Tomoyuki|last16=Kusakabe|first16=Nobuhiko|last17=Abe|first17=Lyu|last18=Brandner|first18=Wolfgang|last19=Brandt|first19=Timothy D.|last20=Egner|first20=Sebastian|last21=Feldt|first21=Markus|last22=Goto|first22=Miwa|last23=Grady|first23=Carol A.|last24=Guyon|first24=Olivier|last25=Hayano|first25=Yutaka|last26=Hayashi|first26=Masahiko|last27=Henning|first27=Thomas|last28=Hodapp|first28=Klaus W.|last29=Ishii|first29=Miki|last30=Iye|first30=Masanori|journal=The Astronomical Journal|volume=153|issue=1 |page=7|arxiv=1610.09134|s2cid=118704497|display-authors=1 |doi-access=free }}

}}

{{Stars of Taurus}}

{{Portal bar|Astronomy|Stars|Outer space}}

{{DEFAULTSORT:GG Tauri}}

Tauri, GG

Category:Taurus (constellation)

Category:T Tauri stars

Category:K-type main-sequence stars

Category:M-type main-sequence stars

Category:Circumstellar disks

5