Gamergate (ant)

{{short description|Reproductively viable female worker ant}}

{{Use dmy dates|date=May 2016}}

File:Pachycondyla berthoudi sam-hym-c007394a profile 1.jpg worker, the ant for which the term gamergate was originally coinedIn the original Naturwissenschaften paper where the term "gamergate" was first used, O. berthoudi is referred to by the synonym Pachycondyla berthoudi.]]

A gamergate ({{IPAc-en|ˈ|ɡ|æ|m|ər|ˌ|ɡ|eɪ|t}} {{Respell|GAMM|ər|gayt}}) is a mated worker ant that can reproduce sexually, i.e., lay fertilized eggs that will develop as females. In the vast majority of ant species, workers are sterile and gamergates are restricted to taxa where the workers have a functional sperm reservoir ('spermatheca'). In some species, gamergates reproduce in addition to winged queens (usually upon the death of the original foundress), while in other species the queen caste has been completely replaced by gamergates. In gamergate species, all workers in a colony have similar reproductive potentials, but as a result of physical interactions, a dominance hierarchy is formed and only one or a few top-ranking workers can mate (usually with foreign males) and produce eggs. Subsequently, however, aggression is no longer needed as gamergates secrete chemical signals that inform the other workers of their reproductive status in the colony.

Depending on the species, there can be one gamergate per colony (monogyny) or several gamergates (polygyny). Most gamergate species have colonies with a few hundred or fewer workers.

Etymology

Gamergate derives from the Greek words {{lang|grc|γάμος}} ({{Lang|grc-latn|gámos}}) and {{lang|grc|ἐργάτης}} ({{Lang|grc-latn|ergátēs}}) and means 'married worker'. It was coined in 1983 by geneticist William Louis Brown and was first used in scientific literature by entomologists Christian Peeters and Robin Crewe in a 1984 paper published in Naturwissenschaften. The definition typically found in entomological dictionaries is 'mated, egg-laying worker', and is drawn from the glossary of Bert Hölldobler and E. O. Wilson's 1990 book, The Ants.

Description

There are 100–200 different species in which gamergates reproduce (roughly 1% of all ants), most of which fall within the poneromorph subfamilies. Whereas workers (which are all females) in most ant species are morphologically incapable of storing sperm, in gamergate species one or several workers mate and have active ovaries. Gamergate lifespan is short compared to queens in queenright colonies, but gamergates can be replaced by other dominant workers in the colony without risking colony survival. Reproductive investment in gamergate females is thus optimized because non-differentiated gamergates (i.e. reproductively inactive workers) function as laborers.

=Caste structure=

File:Diacamma australe casent0172073 dorsal 1.jpg

Within gamergate colonies, all workers are born reproductively viable and are thus potential gamergates. Prior to differentiation as a gamergate, a dominant worker must physically inhibit its sisters. For example, in the case of Diacamma australe, the first female to become reproductively active will clip off the thoracic gemmae of her sisters, thus greatly reducing their sexual attractiveness. In other genera, persistent domination of worker females by gamergates via physical aggression all but ensure that they will not produce male offspring. In Diacamma nilgiri, gamergates use dominance interactions to monopolize reproduction without mutilation of sister workers. The same is true for Streblognathus peetersi, which engage in non-injurious aggression to determine dominance. For most gamergate species, the start of ovarian activity eliminates the need to physically dominate nestmate workers. Instead newly produced pheromones or signaling chemicals ensure that workers remain nonreproductive. Although it is unknown to what degree these chemicals act as pheromones or as signals, support for the signaling hypothesis can be found in the loss of reproductive inhibition of workers as the gamergate grows older and her fecundity diminishes.

Mechanisms of gamergate replacement vary among monogynous and polygynous species. When a gamergate dies, it is usually replaced by a formerly submissive worker who proceeds to mate and begins ovarian activity. A new gamergate often originates from a younger cohort. For example, when the original founding queen dies in a Harpegnathos saltator colony, younger workers begin to fight for dominance and some become the next reproductives. Because reproductively inactive workers are able to activate their ovaries after the death of the gamergate, some gamergate species can be considered cooperative breeders rather than truly eusocial insects.

In colonies with both queens and gamergates, the latter function as secondary reproductives. Research on Amblyoponinae species has shown that there is a fecundity-based hierarchy among gamergates. In Stigmatomma reclinatum, it was found that higher-ranked gamergates had more fully developed oocytes than low-ranked gamergates. In Streblognathus peetersi, only the alpha worker mates and becomes the gamergate; younger workers await a chance to reproduce when the current gamergate exhibits decreased fecundity or dies. Challenges to gamergates from subordinate workers are risky because the gamergate in species like Dinoponera quadriceps may mark the challenger by rubbing special chemicals produced only by the gamergate. These chemicals signal to other workers to immobilize the challenger by biting her appendages and immobilizing her for a few days until her hormonal levels return to normal. Subordinate workers play an important policing role in the selection of future gamergates and are thus able to increase their indirect fitness.

=Social structure variation and ecology=

There is much variation in the social structure of ant colonies with gamergates. Some species such as Harpegnathos saltator, Pseudoneoponera tridentata, Gnamptogenys menadensis, and Rhytidoponera confusa have a winged alate queen caste as well as gamergates. Queenless species with only gamergates and workers may have a monogynous structure with a single gamergate or they may have a polygynous structure with multiple gamergates. Examples of monogynous queenless species include Pachycondyla krugeri, P. sublaevis, Diacamma australe, D. rugosum, Dinoponera quadriceps, Platythyrea lamellosa, and Streblognathus aethiopicus. Examples of polygynous queenless species include Ophthalmopone berthoudi, O. hottentota,{{cite journal |last1=Peetere |first1=C. P. |last2=Crewe |first2=R. M. |year=1985 |title=Queenlessness and reproductive differentiation in Ophthalmopone hottentota |journal=South African Journal of Zoology |volume=20 |issue=4 |page=268 |doi=10.1080/02541858.1985.11447948|doi-access=free }} and all known queenless species of Rhytidoponera. In the queenless Ophthalmopone berthoudi, foreign males visit underground nests to mate with young workers.

Ecologically, gamergate species from different tribes and genera often tend to share certain characteristics. Many gamergate species are solitary generalist foragers living in arid environments. Similar to species with ergatoid queens, the evolution of gamergate reproduction is hypothesized to be associated with a shift to colonial fission. Myrmecologists Christian Peeters and Fuminori Ito have also suggested that "the evolution of gamergate reproduction appears strongly associated with the adaptive benefits of secondary polygyny (e.g. increased colony lifespan and resource inheritance), and it is the preferred option in species having workers able to store sperm."

Classification dispute

The utility of gamergate as a morphological designation is not without critics. Within the field of myrmecology it is a matter of dispute whether caste should be defined primarily by reproductive role or by physical morphology. Notably, Alfred Buschinger has argued that the term worker should be applied only to those ants who make up the non-reproductive caste and queen should be applied only to reproductively viable female ants regardless of their physical appearance. Hölldobler and Wilson suggest that the two positions can be semantically resolved and that the most fruitful approach would be to keep classification "somewhat loose, incorporating either anatomy or roles in a manner that maximizes convenience, precision, and clarity of expression."

Genera with gamergates

The existence of gamergates is symplesiomorphic, or ancestral, in ants. They are known to be present in the following genera:

::*Myrmecia

::*Metapone

See also

Notes

{{Reflist|group=note}}

References

{{Reflist|30em|refs=

{{cite web |url=http://www.antweb.org/description.do?name=Diacamma&rank=genus&project=allantwebants |title= Genus: Diacamma |website=antweb.org |publisher=AntWeb |access-date=12 August 2014}}

{{cite web |url=http://www.antweb.org/description.do?genus=pachycondyla&species=berthoudi&rank=species&project=allantwebants |title= Species: Pachycondyla berthoudi |website=antweb.org |publisher=AntWeb |access-date=12 August 2014}}

{{cite web |url=http://www.antweb.org/description.do?subfamily=ponerinae&genus=streblognathus&rank=genus&project=allantwebants|title= Genus: Streblognathus |website=antweb.org |publisher=AntWeb |access-date=12 August 2014}}

{{cite book |last= Barrows|first= Edward M.|date= 2011|title= Animal Behavior Desk Reference: A Dictionary of Animal Behavior, Ecology, and Evolution|edition= Third|chapter= Caste – Gamergate|publisher= CRC Press|page= 75|isbn= 9781439836514}}

{{cite book |last= Bourke|first= Andrew F. G.|date= 1995|title= Social Evolution in Ants: Monographs in behavior and ecology|chapter= 7 – Kin Conflict: Reproduction (Part 2 – Queen Policing, Queen Control, and Queen Signaling)|publisher= Princeton University Press|pages= 239–240|isbn= 9780691044262}}

{{cite book |last1= Choe|first1= Jae C.|last2= Crespi|first2= Bernard J.|author-link2=Bernard Crespi|date= 1997|title= The Evolution of Social Behaviour in Insects and Arachnids|url= https://archive.org/details/evolutionsocialb00choe|url-access= limited|chapter= Morphologically 'Primitive' Ants|publisher= Cambridge University Press|page= [https://archive.org/details/evolutionsocialb00choe/page/n393 385]|isbn= 9780521589772}}

{{cite book |last= Crespi|first= Bernard J.|editor-last= Martins|editor-first= Emília P.|date= 1996|title= Phylogenies and the Comparative Method in Animal Behavior|chapter= 9 – Comparative Analysis of the Origins and Losses of Eusociality: Causal Mosaics and Historical Uniqueness (Part 6 – Formicidae)|publisher= Oxford University Press|page= 272|isbn= 9780195092103}}

{{cite journal|last1= Dietemann|first1= V.|last2= Peeters|first2= C|last3= Hölldobler|first3= B.|author-link3= Bert Hölldobler|date= 2004|title= Gamergates in the Australian ant subfamily Myrmeciinae |journal= Naturwissenschaften|issn= 0028-1042|volume= 91|issue= 9|pages= 432–435 |doi=10.1007/s00114-004-0549-1 |pmid=15278223|bibcode = 2004NW.....91..432D |s2cid= 26161972}}

{{cite journal |last1= Gobin |first1= B. |last2= Peeters |first2= C. |last3= Billen |first3= J. |title= Production of trophic eggs by virgin workers in the ponerine ant Gnamptogenys menadensis |date= September 1998 |journal= Physiological Entomology |volume= 23 |issue= 4 |pages= 329–336 |doi= 10.1046/j.1365-3032.1998.234102.x |s2cid= 83569093 |url= http://ecologie.snv.jussieu.fr/socialite/PhysEnto%20Gobin.pdf |access-date= 26 August 2016 |archive-url= https://web.archive.org/web/20160827050750/http://ecologie.snv.jussieu.fr/socialite/PhysEnto%20Gobin.pdf |archive-date= 27 August 2016 |url-status= dead }}

{{cite book |last= Gordh|first= Gordon|author-link= Gordon Gordh|date= 2011|title= A Dictionary of Entomology|chapter= Gamergate|publisher= CABI|page= 608|isbn= 9781845935429}}

{{cite news|last1= Gorman|first1= James|title= The Ant Queen Is Dead. Let the Battles Begin|url= https://www.nytimes.com/2014/05/27/science/the-ant-queen-is-dead-let-the-battles-begin.html|access-date= 12 August 2014|work= The New York Times|issn= 0362-4331|date= 27 May 2014}}

{{cite journal|last1= Haskins|first1= Caryl Parker|author-link1= Caryl Parker Haskins|last2= Zahl|first2= P. A.|date= 1971|title= The reproductive pattern of Dinoponera grandis Roger (Hymenoptera, Ponerinae) with notes on the ethology of the species|journal= Psyche: A Journal of Entomology|issn= 0033-2615|volume= 78|issue= 1–2|pages= 1–11|doi= 10.1155/1971/914147|doi-access= free}}

{{cite book|last1= Hölldobler|first1= Bert|author-link1= Bert Hölldobler|last2= Wilson|first2= E. O.|author-link2= E. O. Wilson|date= 1990|title= The Ants|chapter= Caste and Division of Labor|publisher= Harvard University Press|pages= [https://archive.org/details/ants0000hlld/page/301 301 & 305]|isbn= 9780674040755|title-link= The Ants}}

{{cite journal|last1=Hölldobler|first1=Bert|last2=Liebig|first2=Jürgen|last3=Alpert|first3=Gary|title=Gamergates in the myrmicine genus Metapone (Hymenoptera:Formicidae)|journal=Naturwissenschaften|date=2002|volume=89|issue=7|pages=305–307|doi=10.1007/s00114-002-0329-8|pmid=12216860|bibcode = 2002NW.....89..305H |s2cid=6945541}}

{{cite journal |last= Ito|first= Fuminori|date= 1993|title= Social organization in a primitive ponerine ant: queenless reproduction, dominance hierarchy and functional polygyny in Amblyopone sp. (reclinata group) (Hymenoptera: Formicidae: Ponerinae)|journal= Journal of Natural History|issn= 0022-2933|volume= 27|issue= 6|pages= 1315–1324|doi= 10.1080/00222939300770751|bibcode= 1993JNatH..27.1315I}}

{{cite journal |last1= Cournault|first1= Laurent|last2= Peeters|first2= Christian|date= 2012|title= Aggression regulates monogyny in non-mutilating Diacamma ants|journal= Insectes Sociaux|volume= 59|issue= 4|pages= 533–539|doi= 10.1007/s00040-012-0251-9|s2cid= 16179257}}

{{cite journal |last1= Monnin|first1= Thibaud|last2= Ratnieks|first2= Francis L. W.|last3= Jones|first3= Graeme R.|last4= Beard|first4= Richard|date= 5 September 2002|title= Pretender punishment induced by chemical signalling in a queenless ant|journal= Nature|issn= 0028-0836|volume= 419|issue= 6902|pages= 61–65|doi= 10.1038/nature00932|bibcode = 2002Natur.419...61M |pmid=12214231|s2cid= 4372841|url= http://eprints.whiterose.ac.uk/99/1/ratnieksflw2.pdf}}

{{cite press release|last= Noël|first= Carine|date= 6 September 2002|title= How queenless ants regulate their conflicts|url= http://www.cnrs.fr/cw/en/pres/compress/fourmis2.htm|location= Paris|publisher= CNRS|access-date= 2014-09-10|url-status= dead|archive-url= https://web.archive.org/web/20030302185140/http://www.cnrs.fr/cw/en/pres/compress/fourmis2.htm|archive-date= 2 March 2003|df= dmy-all}}

{{cite journal |last1= Peeters|first1= Christian|last2= Crewe|first2= Robin|date= 1984|title= Insemination Controls the Reproductive Division of Labour in a Ponerine Ant|journal= Naturwissenschaften|issn= 0028-1042|volume= 71|issue= 1|pages= 50–51|doi= 10.1007/BF00365989 |bibcode=1984NW.....71...50P|s2cid= 43871631}}

{{cite journal |last1= Peeters|first1= Christian|last2= Crewe|first2= Robin M.|date= 1985|title= Worker reproduction in the ponerine ant Ophthalmopone berthoudi: an alternative form of eusocial organization|journal= Behavioral Ecology and Sociobiology|issn= 0340-5443|volume= 18|issue= 1|pages= 29–37|doi= 10.1007/BF00299235|bibcode= 1985BEcoS..18...29P|s2cid= 20041163|url= https://zenodo.org/record/25727}}

{{cite journal |last= Peeters|first= Christian P.|date= 1987|title= The Reproductive Division of Labour in the Queenless Ponerine Ant Rhytidoponera sp. 12|journal= Insectes Sociaux|issn= 0020-1812|volume= 34|issue= 2|pages= 75–86|doi= 10.1007/BF02223826|s2cid= 26116621}}

{{cite book|last= Peeters|first = Christian P.|editor1-last= Veeresh|editor1-first= G. K.|editor2-last= Mallik|editor2-first= B.|title= Social Insects and the Environment: Proceedings of the 11th International Congress of IUSSI, 1990 (International Union for the Study of Social Insects)|date= 1991|publisher= Brill Academic Pub|isbn= 978-9004093164|page= 234|url= https://books.google.com/books?id=ZsMUAAAAIAAJ&pg=PA234|access-date= 12 August 2014}}

{{cite journal |last1= Peeters|first1= Christian|last2= Hölldobler|first2= Bert|author-link2= Bert Hölldobler|date= November 1995|title= Reproductive cooperation between queens and their mated workers: The complex life history of an ant with a valuable nest|journal= Proceedings of the National Academy of Sciences of the United States of America|issn= 0027-8424|volume= 92|issue= 24|pages= 10977–10979|doi= 10.1073/pnas.92.24.10977 |pmid=11607589 |pmc=40553|bibcode = 1995PNAS...9210977P |doi-access= free}}

{{cite journal |last1= Peeters|first1= Christian|last2= Hölldobler|first2= Bert|author-link2= Bert Hölldobler|date= 2000|title= Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator|journal= Insectes Sociaux|issn= 0020-1812|volume= 47|issue= 4|pages= 325–332|doi= 10.1007/PL00001724|s2cid= 8728206}}

{{cite journal |last1= Peeters|first1= Christian|last2= Ito|first2= Fuminori|date= 2001|title= Colony Dispersal and the Evolution of Queen Morphology in Social Hymenoptera|journal= Annual Review of Entomology|issn= 0066-4170|volume= 46|pages= 601–30|doi= 10.1146/annurev.ento.46.1.601|pmid= 11112181|citeseerx= 10.1.1.562.7031}}

{{cite journal |last1= Peeters |first1= C. |last2= Fisher |first2= B.L. |title= Gamergates (mated egg-laying workers) and queens both reproduce in Euponera sikorae ants from Madagascar. |journal= African Entomology |volume= 24 |issue= 1 |pages= 180–187 |doi= 10.4001/003.024.0180 |date= 14 March 2016 |s2cid= 51851380 |url= http://www.fisherlab.org/uploads/3/9/4/4/39442661/128_peeters_fisher_2016.pdf |access-date= 26 August 2016}}

{{cite journal |last1= Schilder|first1= Klaus|last2= Heinze|first2= Jürgen|last3= Hölldobler|first3= Bert|author-link3= Bert Hölldobler|date= January 1999|title= Colony structure and reproduction in the thelytokous parthenogenetic ant Platythyrea punctata (F. Smith) (Hymenoptera, Formicidae) |journal= Insectes Sociaux|issn= 0020-1812|volume= 46|issue= 2|pages= 150–158|doi= 10.1007/s000400050126|s2cid= 13729041}}

{{cite journal |last1=Schmidt |first1=C. A |last2=Shattuck |first2=S. O. |s2cid=4540972 |date=2014 |title=The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior |journal=Zootaxa |volume=3817 |issue=1 |pages=1–242 |doi=10.11646/zootaxa.3817.1.1 |pmid=24943802}}

{{cite journal |last= Véron|first= Géraldine|date= February 2005|title= La reine des fourmis couronnée au combat|url= http://www2.cnrs.fr/presse/journal/1965.htm|archive-url= https://web.archive.org/web/20050210024631/http://www2.cnrs.fr/presse/journal/1965.htm|archive-date=10 February 2005|journal= Le Journal du CNRS|issn= 0994-7647|issue= 181|pages= 50–51|access-date=9 September 2014}}

}}

{{Eusociality}}

Category:Ants

Category:Insect reproduction