Gamma-order Generalized Normal distribution

{{Orphan|date=June 2025}}

Gamma-Ordered Generalized Normal Distribution

The multivariate Normal distribution, [1], is extended due to the Logarithmic Sobolev Inequalities (LSI), [2], and can act as a family of distributions based on a “shape” parameter. This shape parameter \gamma \in \mathbb{R} - [0,1] creates along with parameters of location, \mu \in \mathbb{R}^p, and dispersion, \Sigma \in \mathbb{R}^{p \times p}, the N_\gamma(\mu, \Sigma) family of distributions with probability density function, [3]

(1) \varphi_\gamma(x) = C \exp \left\{ -\frac{\gamma - 1}{\gamma} \left[ Q(x) \right]^{\frac{\gamma}{2(\gamma - 1)}} \right\},

with the normalized factor C equals to..

(2) C = C_p(\mu, \Sigma; \gamma) = \frac{1}{\pi^{p/2} |\Sigma|^{1/2}} \cdot \frac{\Gamma\left(\frac{p}{2} + 1\right)}{\Gamma\left( \frac{p(\gamma - 1)}{\gamma} + 1 \right)} \left( \frac{\gamma - 1}{\gamma} \right)^{p(\gamma - 1)/\gamma}, \quad \gamma_0 = \frac{\gamma - 1}{\gamma}, \quad \gamma_0 \gamma_1 = 1,

(3) Q(x) = \langle x - \mu, \Sigma^{-1}(x - \mu) \rangle, \quad \mu \in \mathbb{R}^p, \quad \Sigma \in \mathbb{R}^{p \times p},

Consider the N_\gamma(\mu, \sigma^2).\

With p = 1, see [6], with position (mean) \mu, positive scale parameter \sigma, extra shape parameter \gamma \in \mathbb{R} - [0, 1] and pdf \varphi_\gamma(x; \mu, \sigma^2) coming from (1)–(3) and given by, see Figure 1,

(4) \varphi_\gamma(x; \mu, \sigma^2) = \frac{\lambda_\gamma}{\sigma \sqrt{\pi}} \exp \left\{ -\gamma_0 \left( \frac

x - \mu
{\sigma} \right)^{\gamma_1} \right\},

File:GammaPDF1D_Standardized.jpg

Figure 1: The pdf of the standardized φ₍γ₎(x) for γ = 2 (Normal), γ = −0.1 (near to Dirac), γ = 1.05 (near to Uniform) and γ = 30 (near to Laplace), with p = 1.

with

(5) \lambda_\gamma = \frac{\Gamma\left(\frac{1}{2} + 1\right)}{\Gamma\left(\frac{\gamma - 1}{\gamma} + 1\right)} \left( \frac{\gamma - 1}{\gamma} \right)^{\frac{\gamma - 1}{\gamma}} = \frac{\Gamma\left(\frac{1}{2} + 1\right)}{\Gamma(\gamma_0 + 1)} \cdot \gamma_0^{\gamma_0}.

For p = 2 a typical plot is Figure 2

File:GammaPDF2D_3DPlot.jpg

Figure 2: The pdf of the standardized ϕγ(x) for γ = 2 (Normal), γ = 3

(fat-tailed) with p = 2.

Let Y \sim N_\gamma(\mu, \sigma^2) then the central moments are evaluated as

(6) \beta_n = \mathbb{E}(Y^n) = \sum_{\text{even } r = 0}^n \binom{n}{r} \mu^r \sigma^{n - r} \cdot \gamma_0^{-n} \cdot \gamma_0^{n - r} \cdot \frac{\Gamma((n - r + 1)\gamma_0)}{\Gamma(\gamma_0)^{n - r}}.

When \gamma = 2, then

\beta_1 = \mu,\quad \beta_2 = \mu^2 + \sigma^2,\quad \beta_3 = \mu^3 + 3\mu\sigma^2,\quad \beta_4 = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4.

Moreover, the variance and the kurtosis have been evaluated, [4] as

(7) \operatorname{Var}(Y) = \gamma_0^{-2} \cdot \frac{\Gamma(3\gamma_0)}{\Gamma(\gamma_0)} \cdot \sigma^2

and

(8) \operatorname{Kurt}(Y) = \frac{\Gamma(\gamma_0)\Gamma(5\gamma_0)}{\Gamma^2(3\gamma_0)} - 3.

The Laplace transform of \varphi_\gamma(.) can be obtained, [5],

(9) \mathcal{L}_{\varphi_\gamma}(\xi) = \frac{e^{\xi \mu}}{\Gamma(\gamma_0)} \sum_{j=0}^{\infty} \frac{1}{(2j)!} \left( \xi \sigma (\gamma_1)^{\gamma_0} \right)^{2j} \Gamma\left( (2j + 1)\gamma_0 \right).

When \gamma = 2, (9) is reduced to the well-known form of the Laplace transform of the Normal distribution N(\mu, \sigma^2), that is

(10) \mathcal{L}_{\varphi_2}(\xi) = \exp\left\{ \xi \mu + \frac{\xi^2 \sigma^2}{2} \right\}.

Consider X \sim N_\gamma(\mu, \sigma^2 I). The truncated γ-order Normal to the right at x = \tau, see [6], is defined as

f_{\gamma,\tau^+}(x) = \begin{cases}

0 & \text{if } x > \tau \\

\dfrac{C}{\Phi_\gamma\left( \frac{\tau - \mu}{\sigma} \right)} \exp\left\{ -\frac{\gamma - 1}{\gamma} \left| \frac{x - \mu}{\sigma} \right|^{\frac{\gamma}{\gamma - 1}} \right\} & \text{if } x \le \tau

\end{cases}

and the truncated γ-order Normal to the left at x = \tau_0 is

f_{\gamma,\tau_0^-}(x) = \begin{cases}

0 & \text{if } x < \tau_0 \\

\dfrac{C}{1 - \Phi_\gamma\left( \frac{\tau_0 - \mu}{\sigma} \right)} \exp\left\{ -\frac{\gamma - 1}{\gamma} \left| \frac{x - \mu}{\sigma} \right|^{\frac{\gamma}{\gamma - 1}} \right\} & \text{if } x \ge \tau_0

\end{cases}

with C as in (2) with p = 1.

Consider the logarithm of a rv X that follows the γ-order Normal, that is, \ln X \sim N_\gamma(\mu, \sigma^2).

Then X is said to follow the γ-order Lognormal distribution, denoted by LN_\gamma(\mu, \sigma), with pdf, [7]

(11) 

f_{LN_\gamma}(x; \mu, \sigma) = \frac{1}{2x\sigma \Gamma\left( \frac{\gamma - 1}{\gamma} \right) \left( \frac{\gamma - 1}{\gamma} \right)^{\frac{1}{\gamma}}}

\exp\left\{ -\frac{\gamma - 1}{\gamma} \left( \frac

\ln x - \mu
{\sigma} \right)^{\frac{\gamma}{\gamma - 1}} \right\}.

For an application of the γ-order generalized Normal distribution to the generalization of the Heat Equation, [8], see [9].

References

{{Reflist}}

[1] Theodore W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley-Interscience, 3rd edition, July 2003.{{Cite web |title=An Introduction to Multivariate Statistical Analysis, 3rd Edition {{!}} Wiley |url=https://www.wiley.com/en-us/An+Introduction+to+Multivariate+Statistical+Analysis%2C+3rd+Edition-p-9780471360919 |access-date=2025-06-06 |website=Wiley.com |language=en}}

[2] Leonard Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975.{{Cite journal |last=Gross |first=Leonard |date=1975 |title=Logarithmic Sobolev Inequalities |url=https://www.jstor.org/stable/2373688 |journal=American Journal of Mathematics |volume=97 |issue=4 |pages=1061–1083 |doi=10.2307/2373688 |issn=0002-9327|url-access=subscription }}

[3] Christos P. Kitsos and Nikolaos K. Tavoularis. Logarithmic Sobolev Inequalities for Information measures. IEEE Trans. Inform. Theory, 55(6):2554–2561, June 2009.{{Cite journal |last=Kitsos |first=Christos P. |last2=Tavoularis |first2=Nikolaos K. |date=2009 |title=Logarithmic Sobolev Inequalities for Information Measures |url=https://ieeexplore.ieee.org/document/4957631 |journal=IEEE Transactions on Information Theory |volume=55 |issue=6 |pages=2554–2561 |doi=10.1109/TIT.2009.2018179 |issn=1557-9654|url-access=subscription }}

[4] Christos P. Kitsos and Thomas L. Toulias. On the family of the γ-ordered normal distributions. Far East Journal of Theoretical Statistics, 35(2):95–114, January 2011.

[5] Christos P. Kitsos and Ioannis S. Stamatiou. Laplace transformation for the γ-order generalized Normal N_\gamma(\mu, \sigma^2). Far East Journal of Theoretical Statistics, 68(1):1–21, 2024.{{Cite journal |last=Kitsos |first=Christos P. |last2=Stamatiou |first2=Ioannis S. |date=2024 |title=LAPLACE TRANSFORMATION FOR THE $\gamma$-ORDER GENERALIZED NORMAL, $N_\gamma\left(\mu, \sigma^2\right)$ |url=https://pphmjopenaccess.com/index.php/fejts/article/view/1227 |journal=Far East Journal of Theoretical Statistics |language=en |volume=68 |issue=1 |pages=1–21 |doi=10.17654/0972086324001 |issn=0972-0863|url-access=subscription }}

[6] Christos P. Kitsos, Vassilios G. Vassiliadis, and Thomas L. Toulias. MLE for the γ-order generalized normal distribution. Discussiones Mathematicae - Probability and Statistics, 34(1–2):143–158, 2014.{{Cite journal |last=Kitsos |first=Christos P. |last2=Vassiliadis |first2=Vassilios G. |last3=Toulias |first3=Thomas L. |date=2014 |title=MLE for the γ-order Generalized Normal Distribution |url=https://eudml.org/doc/270919 |journal=Discussiones Mathematicae Probability and Statistics |volume=34 |issue=1-2 |pages=143–158 |issn=1509-9423}}

[7] Thomas L. Toulias and Christos P. Kitsos. On the generalized lognormal distribution. Journal of Probability and Statistics, 2013(1/432642):15 pages, July 2013.{{Cite journal |last=Toulias |first=Thomas L. |last2=Kitsos |first2=Christos P. |date=2013 |title=On the Generalized Lognormal Distribution |url=https://ideas.repec.org//a/hin/jnljps/432642.html |journal=Journal of Probability and Statistics |language=en |volume=2013 |pages=1–15}}

[8] Samuel Karlin and Howard M. Taylor. A First Course in Stochastic Processes. Academic Press, New York, 2nd edition, 1975.{{Cite web |title=A First Course in Stochastic Processes Karlin S Taylor H M PDF {{!}} PDF |url=https://www.scribd.com/document/395655753/208835130-A-First-Course-in-Stochastic-Processes-Karlin-S-Taylor-H-M-pdf |access-date=2025-06-06 |website=Scribd |language=en}}

[9] Christos P. Kitsos. Generalizing the Heat Equation. Revstat - Statistical Journal, 23(2):207–221, April 2025.{{Cite web |last=Kitsos |first=Christos |title=Generalizing the Heat Equation |url=https://revstat.ine.pt/index.php/REVSTAT/article/view/517}}

Category:Gamma and related functions