Gamma-order Generalized Normal distribution
{{Orphan|date=June 2025}}
Gamma-Ordered Generalized Normal Distribution
The multivariate Normal distribution, [1], is extended due to the Logarithmic Sobolev Inequalities (LSI), [2], and can act as a family of distributions based on a “shape” parameter. This shape parameter creates along with parameters of location, , and dispersion, , the family of distributions with probability density function, [3]
(1)
with the normalized factor C equals to..
(2)
(3)
Consider the
With p = 1, see [6], with position (mean) , positive scale parameter , extra shape parameter and pdf coming from (1)–(3) and given by, see Figure 1,
(4)
File:GammaPDF1D_Standardized.jpg
Figure 1: The pdf of the standardized φ₍γ₎(x) for γ = 2 (Normal), γ = −0.1 (near to Dirac), γ = 1.05 (near to Uniform) and γ = 30 (near to Laplace), with p = 1.
with
(5)
For a typical plot is Figure 2
(fat-tailed) with p = 2.
Let then the central moments are evaluated as
(6)
When , then
Moreover, the variance and the kurtosis have been evaluated, [4] as
(7)
and
(8)
The Laplace transform of can be obtained, [5],
(9)
When , (9) is reduced to the well-known form of the Laplace transform of the Normal distribution , that is
(10)
Consider . The truncated γ-order Normal to the right at , see [6], is defined as
f_{\gamma,\tau^+}(x) = \begin{cases}
0 & \text{if } x > \tau \\
\dfrac{C}{\Phi_\gamma\left( \frac{\tau - \mu}{\sigma} \right)} \exp\left\{ -\frac{\gamma - 1}{\gamma} \left| \frac{x - \mu}{\sigma} \right|^{\frac{\gamma}{\gamma - 1}} \right\} & \text{if } x \le \tau
\end{cases}
and the truncated γ-order Normal to the left at is
f_{\gamma,\tau_0^-}(x) = \begin{cases}
0 & \text{if } x < \tau_0 \\
\dfrac{C}{1 - \Phi_\gamma\left( \frac{\tau_0 - \mu}{\sigma} \right)} \exp\left\{ -\frac{\gamma - 1}{\gamma} \left| \frac{x - \mu}{\sigma} \right|^{\frac{\gamma}{\gamma - 1}} \right\} & \text{if } x \ge \tau_0
\end{cases}
with as in (2) with .
Consider the logarithm of a rv that follows the γ-order Normal, that is, .
Then is said to follow the γ-order Lognormal distribution, denoted by , with pdf, [7]
(11)
f_{LN_\gamma}(x; \mu, \sigma) = \frac{1}{2x\sigma \Gamma\left( \frac{\gamma - 1}{\gamma} \right) \left( \frac{\gamma - 1}{\gamma} \right)^{\frac{1}{\gamma}}}
\exp\left\{ -\frac{\gamma - 1}{\gamma} \left( \frac
\ln x - \mu |
For an application of the γ-order generalized Normal distribution to the generalization of the Heat Equation, [8], see [9].
References
{{Reflist}}
[1] Theodore W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley-Interscience, 3rd edition, July 2003.{{Cite web |title=An Introduction to Multivariate Statistical Analysis, 3rd Edition {{!}} Wiley |url=https://www.wiley.com/en-us/An+Introduction+to+Multivariate+Statistical+Analysis%2C+3rd+Edition-p-9780471360919 |access-date=2025-06-06 |website=Wiley.com |language=en}}
[2] Leonard Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975.{{Cite journal |last=Gross |first=Leonard |date=1975 |title=Logarithmic Sobolev Inequalities |url=https://www.jstor.org/stable/2373688 |journal=American Journal of Mathematics |volume=97 |issue=4 |pages=1061–1083 |doi=10.2307/2373688 |issn=0002-9327|url-access=subscription }}
[3] Christos P. Kitsos and Nikolaos K. Tavoularis. Logarithmic Sobolev Inequalities for Information measures. IEEE Trans. Inform. Theory, 55(6):2554–2561, June 2009.{{Cite journal |last=Kitsos |first=Christos P. |last2=Tavoularis |first2=Nikolaos K. |date=2009 |title=Logarithmic Sobolev Inequalities for Information Measures |url=https://ieeexplore.ieee.org/document/4957631 |journal=IEEE Transactions on Information Theory |volume=55 |issue=6 |pages=2554–2561 |doi=10.1109/TIT.2009.2018179 |issn=1557-9654|url-access=subscription }}
[4] Christos P. Kitsos and Thomas L. Toulias. On the family of the γ-ordered normal distributions. Far East Journal of Theoretical Statistics, 35(2):95–114, January 2011.
[5] Christos P. Kitsos and Ioannis S. Stamatiou. Laplace transformation for the γ-order generalized Normal . Far East Journal of Theoretical Statistics, 68(1):1–21, 2024.{{Cite journal |last=Kitsos |first=Christos P. |last2=Stamatiou |first2=Ioannis S. |date=2024 |title=LAPLACE TRANSFORMATION FOR THE $\gamma$-ORDER GENERALIZED NORMAL, $N_\gamma\left(\mu, \sigma^2\right)$ |url=https://pphmjopenaccess.com/index.php/fejts/article/view/1227 |journal=Far East Journal of Theoretical Statistics |language=en |volume=68 |issue=1 |pages=1–21 |doi=10.17654/0972086324001 |issn=0972-0863|url-access=subscription }}
[6] Christos P. Kitsos, Vassilios G. Vassiliadis, and Thomas L. Toulias. MLE for the γ-order generalized normal distribution. Discussiones Mathematicae - Probability and Statistics, 34(1–2):143–158, 2014.{{Cite journal |last=Kitsos |first=Christos P. |last2=Vassiliadis |first2=Vassilios G. |last3=Toulias |first3=Thomas L. |date=2014 |title=MLE for the γ-order Generalized Normal Distribution |url=https://eudml.org/doc/270919 |journal=Discussiones Mathematicae Probability and Statistics |volume=34 |issue=1-2 |pages=143–158 |issn=1509-9423}}
[7] Thomas L. Toulias and Christos P. Kitsos. On the generalized lognormal distribution. Journal of Probability and Statistics, 2013(1/432642):15 pages, July 2013.{{Cite journal |last=Toulias |first=Thomas L. |last2=Kitsos |first2=Christos P. |date=2013 |title=On the Generalized Lognormal Distribution |url=https://ideas.repec.org//a/hin/jnljps/432642.html |journal=Journal of Probability and Statistics |language=en |volume=2013 |pages=1–15}}
[8] Samuel Karlin and Howard M. Taylor. A First Course in Stochastic Processes. Academic Press, New York, 2nd edition, 1975.{{Cite web |title=A First Course in Stochastic Processes Karlin S Taylor H M PDF {{!}} PDF |url=https://www.scribd.com/document/395655753/208835130-A-First-Course-in-Stochastic-Processes-Karlin-S-Taylor-H-M-pdf |access-date=2025-06-06 |website=Scribd |language=en}}
[9] Christos P. Kitsos. Generalizing the Heat Equation. Revstat - Statistical Journal, 23(2):207–221, April 2025.{{Cite web |last=Kitsos |first=Christos |title=Generalizing the Heat Equation |url=https://revstat.ine.pt/index.php/REVSTAT/article/view/517}}