Gauss–Hermite quadrature

{{short description|Form of Gaussian quadrature}}

File:Gauss-Hermite quadrature weights.svg

In numerical analysis, Gauss–Hermite quadrature is a form of Gaussian quadrature for approximating the value of integrals of the following kind:

:\int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx.

In this case

:\int_{-\infty}^{+\infty} e^{-x^2} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)

where n is the number of sample points used. The xi are the roots of the physicists' version of the Hermite polynomial Hn(x) (i = 1,2,...,n), and the associated weights wi are given by

Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, {{ISBN|978-0-486-61272-0}}. Equation 25.4.46.

:w_i = \frac {2^{n-1} n! \sqrt{\pi}} {n^2[H_{n-1}(x_i)]^2}.

Example with change of variable

Consider a function h(y), where the variable y is Normally distributed: y \sim \mathcal{N}(\mu,\sigma^2). The expectation of h corresponds to the following integral:

E[h(y)] = \int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp \left( -\frac{(y-\mu)^2}{2\sigma^2} \right) h(y) dy

As this does not exactly correspond to the Hermite polynomial, we need to change variables:

x = \frac{y-\mu}{\sqrt{2} \sigma} \Leftrightarrow y = \sqrt{2} \sigma x + \mu

Coupled with the integration by substitution, we obtain:

E[h(y)] = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} \exp(-x^2) h(\sqrt{2} \sigma x + \mu) dx

leading to:

E[h(y)] \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^n w_i h(\sqrt{2} \sigma x_i + \mu)

As an illustration, in the simplest non-trivial case, with n = 2, we have x_1 = -\frac{1}{\sqrt{2}}, x_2 = \frac{1}{\sqrt{2}} and w_1 = w_2 = \frac{\sqrt{\pi}}{2}, so the estimate reduces to:

E[h(y)] \approx \frac{1}{2}(h(\mu - \sigma) + h(\mu + \sigma))

– i.e. the average of the function's values one standard deviation below and above the mean.

References

  • {{dlmf| id = 3.5.E28| title=Quadrature: Gauss–Hermite Formula}}
  • {{cite journal|first1=T. S. | last1=Shao | first2=T. C. | last2=Chen | first3= R. M. | last3=Frank

|title=Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials

|year=1964

|journal=Math. Comp. | mr=0166397 | volume=18 | number=88 | pages=598–616 |doi=10.1090/S0025-5718-1964-0166397-1| doi-access=free }}

  • {{cite journal|first1=N. M. | last1=Steen | first2=G. D. | last2=Byrne

|first3=E. M. | last3=Gelbard | title = Gaussian quadratures for the integrals \textstyle\int_0^\infty e^{-x^2} f(x) dx and \textstyle\int_0^b e^{-x^2} f(x) dx

|journal = Math. Comp. | year=1969

|volume=23 | number=107 | pages=661–671 | mr=0247744 | doi=10.1090/S0025-5718-1969-0247744-3 | doi-access=free }}

  • {{cite journal|first1= B. | last1=Shizgal | title = A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems

|journal=J. Comput. Phys. | volume=41 | pages=309–328 | year=1981

| issue=2 |doi=10.1016/0021-9991(81)90099-1 | bibcode=1981JCoPh..41..309S }}