Gauss–Legendre method

{{One source|date=January 2023}}

In numerical analysis and scientific computing, the Gauss–Legendre methods are a family of numerical methods for ordinary differential equations. Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s.{{harvnb|Iserles|1996|p=47}}

All Gauss–Legendre methods are A-stable.{{harvnb|Iserles|1996|p=63}}

The Gauss–Legendre method of order two is the implicit midpoint rule. Its Butcher tableau is:

:

cellpadding=3px cellspacing=0px style="text-align: center;"

| style="border-right:1px solid; border-bottom:1px solid;" | 1/2

style="border-bottom:1px solid;" | 1/2
style="border-right:1px solid;" |1

The Gauss–Legendre method of order four has Butcher tableau:

:

cellpadding=3px cellspacing=0px style="text-align: center;"

| style="border-right:1px solid;" | \tfrac12 - \tfrac16 \sqrt3

\tfrac14 \tfrac14 - \tfrac16 \sqrt3
style="border-right:1px solid; border-bottom:1px solid;" | \tfrac12 + \tfrac16 \sqrt3 style="border-bottom:1px solid;" | \tfrac14 + \tfrac16 \sqrt3 style="border-bottom:1px solid;" | \tfrac14
style="border-right:1px solid;" | \tfrac12 \tfrac12

The Gauss–Legendre method of order six has Butcher tableau:

:

cellpadding=3px cellspacing=0px style="text-align: center;"

| style="border-right:1px solid;" | \tfrac12 - \tfrac1{10} \sqrt{15}

\tfrac5{36} \tfrac29 - \tfrac1{15} \sqrt{15} \tfrac5{36} - \tfrac1{30} \sqrt{15}
style="border-right:1px solid;" | \tfrac12 \tfrac5{36} + \tfrac1{24} \sqrt{15} \tfrac29 \tfrac5{36} - \tfrac1{24} \sqrt{15}
style="border-right:1px solid; border-bottom:1px solid;" | \tfrac12 + \tfrac1{10} \sqrt{15} style="border-bottom:1px solid;" | \tfrac5{36} + \tfrac1{30} \sqrt{15} style="border-bottom:1px solid;" | \tfrac29 + \tfrac1{15} \sqrt{15} style="border-bottom:1px solid;" | \tfrac5{36}
style="border-right:1px solid;" | \tfrac5{18} \tfrac49 \tfrac5{18}

The computational cost of higher-order Gauss–Legendre methods is usually excessive, and thus, they are rarely used.{{harvnb|Iserles|1996|p=47}}

Intuition

Gauss-Legendre Runge-Kutta (GLRK) methods solve an ordinary differential equation \dot{x} = f(x) with x(0) = x_0. The distinguishing feature of GLRK is the estimation of x(h) - x_0 = \int_0^h f( x(t) ) \, dt with Gaussian quadrature.

x(h) = x(0) + \frac{h}{2} \sum_{i=1}^\ell w_i k_i + O(h^{2\ell}),

where k_i = f( x( h c_i) ) are the sampled velocities, w_i are the quadrature weights, c_i = \frac{1}{2} h (1+r_i) are the abscissas, and r_i are the roots P_\ell(r_i) = 0 of the Legendre polynomial of degree \ell. A further approximation is needed, as k_i is still impossible to evaluate. To maintain truncation error of order O(h^{2\ell}), we only need k_i to order O(h^{2\ell-1}). The Runge-Kutta implicit definition k_i = f{\left(x_0 + h \sum_j a_{ij} k_j \right)} is invoked to accomplish this. This is an implicit constraint that must be solved by a root finding algorithm like Newton's method. The values of the Runge-Kutta parameters a_{ij} can be determined from a Taylor series expansion in h.

Practical example

The Gauss-Legendre methods are implicit, so in general they cannot be applied exactly. Instead one makes an educated guess of k_i , and then uses Newton's method to converge arbitrarily close to the true solution. Below is a Matlab function which implements the Gauss-Legendre method of order four.

% starting point

x = [ 10.5440; 4.1124; 35.8233];

dt = 0.01;

N = 10000;

x_series = [x];

for i = 1:N

x = gauss_step(x, @lorenz_dynamics, dt, 1e-7, 1, 100);

x_series = [x_series x];

end

plot3( x_series(1,:), x_series(2,:), x_series(3,:) );

set(gca,'xtick',[],'ytick',[],'ztick',[]);

title('Lorenz Attractor');

return;

function [td, j] = lorenz_dynamics(state)

% return a time derivative and a Jacobian of that time derivative

x = state(1);

y = state(2);

z = state(3);

sigma = 10;

beta = 8/3;

rho = 28;

td = [sigma*(y-x); x*(rho-z)-y; x*y-beta*z];

j = [-sigma, sigma, 0;

rho-z, -1, -x;

y, x, -beta];

end

function x_next = gauss_step( x, dynamics, dt, threshold, damping, max_iterations )

[d,~] = size(x);

sq3 = sqrt(3);

if damping > 1 || damping <= 0

error('damping should be between 0 and 1.')

end

% Use explicit Euler steps as initial guesses

[k,~] = dynamics(x);

x1_guess = x + (1/2-sq3/6)*dt*k;

x2_guess = x + (1/2+sq3/6)*dt*k;

[k1,~] = dynamics(x1_guess);

[k2,~] = dynamics(x2_guess);

a11 = 1/4;

a12 = 1/4 - sq3/6;

a21 = 1/4 + sq3/6;

a22 = 1/4;

error = @(k1, k2) [k1 - dynamics(x+(a11*k1+a12*k2)*dt); k2 - dynamics(x+(a21*k1+a22*k2)*dt)];

er = error(k1, k2);

iteration=1;

while (norm(er) > threshold && iteration < max_iterations)

fprintf('Newton iteration %d: error is %f.\n', iteration, norm(er) );

iteration = iteration + 1;

[~, j1] = dynamics(x+(a11*k1+a12*k2)*dt);

[~, j2] = dynamics(x+(a21*k1+a22*k2)*dt);

j = [eye(d) - dt*a11*j1, -dt*a12*j1;

-dt*a21*j2, eye(d) - dt*a22*j2];

k_next = [k1;k2] - damping * linsolve(j, er);

k1 = k_next(1:d);

k2 = k_next(d+(1:d));

er = error(k1, k2);

end

if norm(er) > threshold

error('Newton did not converge by %d iterations.', max_iterations);

end

x_next = x + dt / 2 * (k1 + k2);

end

This algorithm is surprisingly cheap. The error in k_i can fall below 10^{-12} in as few as 2 Newton steps. The only extra work compared to explicit Runge-Kutta methods is the computation of the Jacobian.

File:Lorenz Attractor from Gauss-Legendre.png

Time-symmetric variants

At the cost of adding an additional implicit relation, these methods can be adapted to have time reversal symmetry. In these methods, the averaged position (x_f+x_i)/2 is used in computing k_i instead of just the initial position x_i in standard Runge-Kutta methods. The method of order 2 is just an implicit midpoint method.

: k_1 = f\left(\frac{x_f+x_i}{2}\right)

: x_f = x_i + h k_1

The method of order 4 with 2 stages is as follows.

: k_1 = f\left( \frac{x_f+x_i}{2} - \frac{\sqrt{3}}{6} h k_2\right)

: k_2 = f\left( \frac{x_f+x_i}{2} + \frac{\sqrt{3}}{6} h k_1\right)

: x_f = x_i + \frac{h}{2}(k_1 + k_2)

The method of order 6 with 3 stages is as follows.

: k_1 = f\left( \frac{x_f + x_i}{2} - \frac{\sqrt{15}}{15} h k_2 - \frac{\sqrt{15}}{30} h k_3 \right)

: k_2 = f\left( \frac{x_f + x_i}{2} + \frac{\sqrt{15}}{24} h k_1 - \frac{\sqrt{15}}{24} h k_3 \right)

: k_3 = f\left( \frac{x_f + x_i}{2} + \frac{\sqrt{15}}{30} h k_1 + \frac{\sqrt{15}}{15} h k_2 \right)

: x_f = x_i + \frac{h}{18}( 5 k_1 + 8k_2 + 5k_3)

Notes

{{reflist}}

References

  • {{Citation | last1=Iserles | first1=Arieh | author1-link=Arieh Iserles | title=A First Course in the Numerical Analysis of Differential Equations | publisher=Cambridge University Press | isbn=978-0-521-55655-2 | year=1996|url=https://books.google.com/books?id=7Zofw3SFTWIC&q=%22Gauss%E2%80%93Legendre%22}}.

{{DEFAULTSORT:Gauss-Legendre method}}

Category:Runge–Kutta methods