Gaussian isoperimetric inequality

In mathematics, the Gaussian isoperimetric inequality, proved by Boris Tsirelson and Vladimir Sudakov,{{Cite journal|last1=Sudakov|first1=V. N.|last2=Tsirel'son|first2=B. S.|date=1978-01-01|orig-year=Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 41, pp. 14–24, 1974|title=Extremal properties of half-spaces for spherically invariant measures|journal=Journal of Soviet Mathematics|language=en|volume=9|issue=1|pages=9–18|doi=10.1007/BF01086099|s2cid=121935322 |issn=1573-8795|doi-access=free}} and later independently by Christer Borell,{{Cite journal|last=Borell|first=Christer|date=1975|title=The Brunn-Minkowski Inequality in Gauss Space.|url=https://eudml.org/doc/142349|journal=Inventiones Mathematicae|volume=30|issue=2|pages=207–216|issn=0020-9910|doi=10.1007/BF01425510|bibcode=1975InMat..30..207B |s2cid=119453532 |url-access=subscription}} states that among all sets of given Gaussian measure in the n-dimensional Euclidean space, half-spaces have the minimal Gaussian boundary measure.

Mathematical formulation

Let \scriptstyle A be a measurable subset of \scriptstyle\mathbf{R}^n endowed with the standard Gaussian measure \gamma^n with the density {\exp(-\|x\|^2/2)}/(2\pi)^{n/2}. Denote by

: A_\varepsilon = \left\{ x \in \mathbf{R}^n \, | \,

\text{dist}(x, A) \leq \varepsilon \right\}

the ε-extension of A. Then the Gaussian isoperimetric inequality states that

: \liminf_{\varepsilon \to +0}

\varepsilon^{-1} \left\{ \gamma^n (A_\varepsilon) - \gamma^n(A) \right\}

\geq \varphi(\Phi^{-1}(\gamma^n(A))),

where

: \varphi(t) = \frac{\exp(-t^2/2)}{\sqrt{2\pi}}\quad{\rm and}\quad\Phi(t) = \int_{-\infty}^t \varphi(s)\, ds.

Proofs and generalizations

The original proofs by Sudakov, Tsirelson and Borell were based on Paul Lévy's spherical isoperimetric inequality.

Sergey Bobkov proved Bobkov's inequality, a functional generalization of the Gaussian isoperimetric inequality, proved from a certain "two point analytic inequality".{{Cite journal|last=Bobkov|first=S. G.|date=1997|title=An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space|journal=The Annals of Probability|language=en|volume=25|issue=1|pages=206–214|doi=10.1214/aop/1024404285|issn=0091-1798|doi-access=free}} Bakry and Ledoux gave another proof of Bobkov's functional inequality based on the semigroup techniques which works in a much more abstract setting.{{Cite journal|last1=Bakry|first1=D.|last2=Ledoux|first2=M.|date=1996-02-01|title=Lévy–Gromov's isoperimetric inequality for an infinite dimensional diffusion generator|journal=Inventiones Mathematicae|language=en|volume=123|issue=2|pages=259–281|doi=10.1007/s002220050026|s2cid=120433074 |issn=1432-1297}} Later Barthe and Maurey gave yet another proof using the Brownian motion.{{Cite journal|last1=Barthe|first1=F.|last2=Maurey|first2=B.|date=2000-07-01|title=Some remarks on isoperimetry of Gaussian type|journal=Annales de l'Institut Henri Poincaré B|volume=36|issue=4|pages=419–434|doi=10.1016/S0246-0203(00)00131-X|bibcode=2000AIHPB..36..419B |issn=0246-0203|url=http://www.numdam.org/item/AIHPB_2000__36_4_419_0/}}

The Gaussian isoperimetric inequality also follows from Ehrhard's inequality.{{Cite journal|last=Latała|first=Rafał|date=1996|title=A note on the Ehrhard inequality|url=https://www.infona.pl//resource/bwmeta1.element.bwnjournal-article-smv118i2p169bwm|journal=Studia Mathematica|language=English|volume=2|issue=118|pages=169–174|doi=10.4064/sm-118-2-169-174 |issn=0039-3223|doi-access=free}}{{Cite journal|last=Borell|first=Christer|date=2003-11-15|title=The Ehrhard inequality|journal=Comptes Rendus Mathématique|volume=337|issue=10|pages=663–666|doi=10.1016/j.crma.2003.09.031|issn=1631-073X}}

See also

References