Gelfand–Shilov space

In the mathematical field of functional analysis, a Gelfand–Shilov space S_{\alpha}^{\beta} is a space of test functions for the theory of generalized functions, introduced by {{harvs|txt|last=Gelfand|author1-link=Israel Gelfand|last2=Shilov|author2-link=Georgii Evgen'evich Shilov|year=1968|loc=Chapter IV}}.

References

{{reflist}}

{{reflist|group=note}}

  • {{Citation|last1=Chung|first1=Jaeyoung|last2=Chung|first2=Soon-Yeong|last3=Kim|first3=Dohan|title=Characterizations of the Gel'fand–Shilov spaces via Fourier transforms|doi=10.1090/S0002-9939-96-03291-1|mr=1322917|year=1996|journal=Proceedings of the American Mathematical Society|issn=0002-9939|volume=124|issue=7|pages=2101–2108| doi-access=free}}
  • {{Citation|last1=Gelfand|first1=I. M.|last2=Shilov|first2=G. E.|title=Generalized functions. Vol. 2. Spaces of fundamental and generalized functions|origyear=1958|publisher=Academic Press|location=Boston, MA| mr=0230128|year=1968|volume=2}}

{{Functional analysis}}

{{Topological vector spaces}}

{{DEFAULTSORT:Gelfand-Shilov space}}

Category:Functional analysis

Category:Generalized functions

Category:Schwartz distributions

Category:Topological vector spaces

{{mathanalysis-stub}}