General Motors 60° V6 engine#LA1

{{more references|date=January 2024}}

{{Infobox automobile engine

| image = 2005 Pontiac Grand Am 3400 engine.jpg

| name = General Motors 60° V6 engine

| manufacturer = General Motors

| aka = X engine

| production = 1980–2005 (US)
1997–2010 (China)

| predecessor =

| successor = {{ubl | GM High Value Engine | Isuzu V engine (Isuzu applications only) }}

| configuration = 60° V6

| block = Cast iron

| head = {{ubl |Cast iron|Aluminum}}

| valvetrain = {{ubl |OHV 2 valves x cyl.|DOHC 4 valves x cyl. (LQ1 only}}

| bore = {{ubl |{{cvt|89|mm|in}}|{{cvt|92|mm|in|2}}}}

| stroke = {{ubl |{{cvt|66.7|mm|in|2}}|{{cvt|76|mm|in|2}}|{{cvt|80|mm|in|2}}|{{cvt|84|mm|in|2}}}}

| displacement = {{ubl

|{{cvt|2490|cc|L cuin|order=flip|1}}

|{{cvt|2837|cc|L cuin|order=flip|1}}

|{{cvt|2986|cc|L cuin|order=flip|1}}

|{{cvt|3135|cc|L cuin|order=flip|1}}

|{{cvt|3350|cc|L cuin|order=flip|1}}

}}

| fuelsystem = {{ubl |Carburetor|Throttle-body fuel injection|Multi-port fuel injection|Sequential multi-port fuel injection}}

| fueltype = Gasoline, M85, E85

| oilsystem = Wet sump

| coolingsystem = Water-cooled

| turbocharger = Only on LG5

| compression = 8.5:1, 9.6:1

| power = {{cvt|112-215|hp|kW|0}}

| torque = {{cvt|145-225|lbft|Nm|0}}

}}

The General Motors 60° V6 engine family is a series of 60° V6 engines produced for both longitudinal and transverse applications. All of these engines are 12-valve cam-in-block or overhead valve engines, except for the LQ1 which uses 24 valves driven by dual overhead cams. These engines vary in displacement between {{convert|2837|and|3350|cc|L|order=flip|1}} and have a cast-iron block and either cast-iron or aluminum heads. Production of these engines began in 1980 and ended in 2005 in the U.S., with production continued in China until 2010. This engine family was the basis for the GM High Value engine family. These engines have also been referred to as the X engines as they were first used in the X-body cars.

This engine is not related to the GMC V6 engine that was designed for commercial vehicle usage.

This engine family was developed by Chevrolet, although it was used by many GM divisions, except for Saturn and Geo.

Generation I

The first generation of modern small GM 60° V6 engines featured an iron block and heads with inline valves. This "clean sheet" design was introduced in 1980 and versions were produced through 1995. Two different blocks with minor differences were developed:

=Transverse=

The transverse engines began the 60° family in 1980. Like the rest of the Generation I engines, they were updated in 1985 with larger main journals for durability, along with multi-point fuel injection or E2SE carburetor and OBD I. Production of the Generation I transverse engines ended in 1988.

==2.8 L==

===LE2===

The {{cvt|2837|cc|L|order=flip|1}} LE2 was the first version of the 60° engine. It was a transverse version produced from 1980 through 1986 for the A-body and X-body cars. The standard ("X-code") engine for this line, it used a two-barrel carburetor. Output was {{cvt|115|hp|kW|0}} for 1980–81, {{cvt|112|hp|kW|0}} for 1982–86, and {{cvt|135|lbft|Nm|0}} in high-output versions. Bore was {{cvt|89|mm|in}} and stroke was {{cvt|76|mm|in|2}}.

Applications:

===LH7===

Introduced in 1981, the {{cvt|2837|cc|L|order=flip|1}} LH7 was a High Output ("Z-code") version of the LE2 for the higher-performance X-cars like the Chevrolet Citation X-11 and higher-performance A-cars like the Pontiac 6000 STE. It retained a two-barrel carburetor and produced {{cvt|135|hp|kW|0}} and {{cvt|165|lbft|Nm|0}} for 1981 and {{cvt|145|lbft|Nm|0}} for 1982–1984 versions. The LH7 was replaced after 1984 with the MFI L44.

Applications:

===L44===

File:1988 Fiero Formula motor.jpg Fiero Formula]]

The L44 was produced from 1985 to 1988, replacing the LH7. It was the first transverse {{cvt|2837|cc|L|order=flip|1}} to use multiport fuel injection, and was a High Output ("9-code") engine option for the higher performance A-cars, X-cars, and Pontiac Fiero. This engine produced {{cvt|140|hp|kW|0}} at 5200 rpm and {{cvt|170|lbft|Nm|0}} of torque at 3600 rpm.1984 General Motors, "Pontiac Fiero 1985 Do-It-Yourself" Manual, pg 3-21985 General Motors, "Pontiac Fiero 1986 Do-It-Yourself" Manual, pg 3-21986 General Motors, "1987 Pontiac Fiero Owner's Manual", pg 6-51987 General Motors, "1988 Pontiac Fiero Owner's Manual", pg 6-4 {{cn span|text=This engine's camshaft and cylinder heads were later reused in the L32 {{cvt|3350|cc|L|order=flip|1}} engine.|date=June 2022}}

Applications:

===LB6===

The LB6 ("W-code") 2.8 L (2,837 cc) engine was introduced in 1985 to replace the original LE2. It used multiport fuel injection and produced {{cvt|130|hp|kW|0}} at 4500 rpm and {{cvt|160|lbft|Nm|0}} off torque at 3600 rpm.

Applications:

==3.1 L==

===LG6===

The LG6 ("D-code") 3.1 L was produced from 1990 to 1996 in both transverse and longitudinal applications. It used throttle-body fuel injection and iron heads. It produced {{cvt|120|hp|kW|0}} and {{cvt|170|lbft|Nm|0}}.

Applications:

=Longitudinal=

The longitudinal versions had minor differences from the transverse engines on which they were based. This group appeared in 1982 with the LC1 and LR2 and never added the aluminum heads of the Generation II engines.

Like the rest of the family, larger journals appeared in 1985, along with multiport fuel injection for the F-body LB8 version. TBI was added for the truck version in 1986. A {{cvt|3135|cc|L|order=flip|1}} version was added in 1990 with an {{cvt|8|mm|in|1}} longer stroke (now 84mm), and a {{cvt|3350|cc|L|order=flip|1}} appeared for 1993 with a {{cvt|92|mm|in|1}} bore and SFI. Production of the {{cvt|2837|and|3135|cc|L|order=flip|1}} (Isuzu) engines ended in 1994. Production ended for all longitudinal 60° V6s in 1996. GM's performance-parts division continued production of a related crate engine after 1999.

2.8 Applications:

3.1 Applications:

==2.8 L==

===LC1===

The longitudinal LC1 was produced from 1982 to 1984. It was a 2-barrel standard output ("1-code") version for the F-body cars. Output was {{cvt|102|hp|kW|0}} and {{cvt|145|lbft|Nm|0}}. It was replaced by the LB8 for 1985.

Applications:

===LR2===

The longitudinal LR2 was a truck version ("B-code") produced from 1982 to 1986. It used a two-barrel carburetor and produced {{cvt|115|hp|kW|0}} and {{cvt|150|lbft|Nm|0}}.

Applications:

===LL1/LL2===

The longitudinal LL1 was a high-output version of the LC1 produced in 1983 and 1984. It was an optional ("L-code") engine on the Pontiac Firebird with {{cvt|125|hp|kW|0}}.

Applications:

The carbureted LL2 ("R-code") was produced from 1982 to 1988. Another LL2 ("R-code") with throttle-body fuel injection was produced from 1986 to 1993. Output of the TBI version was {{cvt|125|hp|0}}.

Applications:

===LB8===

The LB8 ("S-code") replaced the LC1 in 1985 and was produced until 1989. It used multiport fuel injection and was made for longitudinal mounting. Output was {{cvt|135|hp|kW|0}} and {{cvt|165|lbft|Nm|0}}.

Applications:

==3.1 L==

===LH0===

The 3.1L LH0 as used in the rear-wheel-drive applications differed significantly from that used in front-wheel-drive applications. The latter retained the Generation-I architecture block and heads. Output was {{cvt|140|hp|0}} and {{cvt|180|lbft|0}}.

Applications:

===L32===

The power rating of the {{cvt|3350|cc|L|order=flip|1}} L32 ("S-code") used in the Camaro and Firebird was {{cvt|160|hp|kW|0}} at 4,600 rpm and {{cvt|200|lbft|Nm|0}} torque at 3,600 rpm. It has a {{cvt|92| × |84|mm|in|2}} bore and stroke. The F-body cars used the Generation I architecture, with iron heads, and without splayed valves.

Applications:

Generation II

The second generation, still {{convert|2837|cc|L|order=flip|1}}, was introduced in 1987. It used aluminum heads with splayed valves and an aluminum front cover. It was produced exclusively for transverse, front-wheel-drive use. The next year, Chevrolet introduced a full-production long-stroke {{cvt|3135|cc|L CID|order=flip|1}} version in the Pontiac 6000 STE AWD, with a {{cvt|89|mm|in|1}} bore and {{cvt|84|mm|in|2}} stroke compared to the 2.8 which shared the same bore, however with a {{cvt|76|mm|2}} in stroke. It was produced simultaneously with the {{cvt|2837|cc|L|order=flip|1}} in various compact and midsized vehicles until 1990, when the {{cvt|2837|cc|L|order=flip|1}} was dropped. MPFI was used on both, and a full-production turbo version was available on the {{cvt|3135|cc|L|order=flip|1}}. An even higher displacement DOHC {{cvt|3350|cc|L|order=flip|1}} LQ1 was also developed, and eventually, the new GM High Value engine family followed. Production of OHV Generation II engines ended in 1994 after the introduction of the Generation III in 1993.

=2.8 L=

==LB6==

The {{cvt|2837|cc|L|order=flip|1}} 60° V6 was used in these vehicles:

File:2.8L Regal.JPG

File:GM 60deg 3.1LMPFI eng ChevBeretta.jpg

=3.1 L=

==LH0==

The {{cvt|3135|cc|cc L cuin|1|order=out}} LH0 ("T-code") was introduced in 1988 on the Pontiac 6000 STE AWD, featuring more advanced multi-port fuel injection. It was produced until 1994 (1996 for the Mexican market) and was exported in some models. This engine produced {{cvt|135|hp|kW|0}} and {{cvt|180|lbft|Nm|0}} of torque from 1988–1989; it was then upgraded to {{cvt|140|hp|kW|0}} at 4800 rpm and {{cvt|185|lbft|Nm|0}} of torque at 3600 rpm.

Applications:

==L64==

The L64 ("W-code") was introduced in 1991 as a flexible-fuel version of the {{cvt|3135|cc|L|order=flip|1}}. The two versions were one that could run M85 (85% methanol/15% gasoline) and one that could run E85 (85% ethanol/15% gasoline).

Uses:

  • 1991–1993 Chevrolet Lumina VFV{{cite news|last=Hyden|first=David|title='Flexible-fuel' Lumina Goes For Real-world Test|url=https://www.chicagotribune.com/1990/11/25/flexible-fuel-lumina-goes-for-real-world-test/|access-date=27 September 2013|newspaper=Chicago Tribune|date=November 25, 1990}}{{cite web|work=Green Car Journal Editors |title=Cars On Alcohol, Part 1: M85 Methanol Emerges |url=http://www.greencar.com/articles/cars-alcohol-part-1-m85-methanol-emerges.php |publisher=greencar.com |access-date=27 September 2013 |date= |url-status=dead |archive-url=https://web.archive.org/web/20131002141257/http://www.greencar.com/articles/cars-alcohol-part-1-m85-methanol-emerges.php |archive-date=2 October 2013 }}
  • 1992–1993 Chevrolet Lumina E85 VFV{{cite web|work=Green Car Journal Editors |title=Cars On Alcohol, Part 13: GM Supports FlexFuel |url=http://www.greencar.com/articles/cars-alcohol-part-13-gm-supports-flexfuel.php |publisher=greencar.com |access-date=27 September 2013 |date=2007-10-13 |url-status=dead |archive-url=https://web.archive.org/web/20131002140820/http://www.greencar.com/articles/cars-alcohol-part-13-gm-supports-flexfuel.php |archive-date=2 October 2013 }}

==LG5==

The LG5 ("V-code") was a special {{cvt|3135|cc|L|order=flip|1}} turbocharged engine produced with McLaren for the 1989 and 1990 model years. It featured the same multiport fuel injection intake manifolds and throttle body as the LH0, and produced {{cvt|205|hp|kW|0}} at 5200 rpm and {{cvt|225|lbft|Nm|0}} of torque at 2100 rpm. Around 3,700 engines were produced each year. This engine had a block with more nickel content and hardened internals.

Applications:

=3.4 L=

==LQ1==

File:GM 60 Degree V6 engine Generation II LQ.jpg V6 (LQ1)]]

The LQ1 (also called the Twin Dual Cam or TDC) was a {{cvt|3350|cc|L|order=flip|1}} DOHC V6 engine ("X-code") based on the aluminum-headed second generation of GM's 60° engine line, sharing a similar block with its pushrod cousins, the 3.1 L LH0 V6 and the then recently retired {{cvt|2837|cc|L|order=flip|1}} LB6 V6. The engine was built only for front-wheel-drive applications, and was featured exclusively in the first generation of GM's W-body platform.

It was built from 1991 to 1997. From 1991 to 1993, it used tuned multiport fuel injection, and made {{cvt|200-210|hp|kW|0}} at 5200 rpm and {{cvt|215|lbft|Nm|0}} of torque at 4000 rpm. From 1994 to 1997, it used sequential port fuel injection, and made {{cvt|210|hp|kW|0}} at 5200 rpm and {{cvt|215|lbft|Nm|0}} of torque at 4000 rpm. In 1996, the heads were redesigned for better flow, as well as now making the engine an interference design and adapting the engine for federally mandated OBD-II emissions. Output for the 1996–97 LQ1 is {{cvt|215|hp|kW|0}} and {{cvt|220|lbft|Nm|0}}. It had four valves per cylinder. The {{cvt|3350|cc|L|order=flip|1}} engine substituted the standard camshaft for a chain-driven intermediate shaft, which drives four overhead cams via a cogged belt. Adapting the 60° pushrod block for the LQ1's overhead cams significantly increased packaged engine height.

Bore was increased to {{cvt|92|mm|in|1}}, and the {{cvt|3135|cc|L|order=flip|1}} engine's {{cvt|84|mm|in|2}} stroke was retained. Only a few interchangeable parts are use between this DOHC engine and other members of the 60° family, primarily the connecting rods and crankshaft.

The heads and intake manifolds were redesigned for the 1996 model year, incorporating a larger throttle body and plenum area, slightly longer intake runners, cloverleaf combustion chambers, and larger "pill"-shaped exhaust ports. Camshafts and cam timing were also revised for the new, higher-rpm powerband.

Optional from 1991 to 1993 was a Getrag 284 five-speed manual transaxle, which was also exclusive to the GM W platform and was available only with the LQ1. The electronically-controlled Hydramatic 4T60-E four-speed automatic transaxle was the alternative, used during the entire production run with the exception of the 1997 Monte Carlo Z34 and 1997 Lumina LTZ, which received the 4T65-E.

Applications:

Generation III

The third generation of the 60° engine was introduced in the 1993 Oldsmobile Cutlass Supreme. Like its predecessors, it continued to use an overhead valve configuration with two valves per cylinder, a cast-iron cylinder block, aluminum cylinder heads, and an aluminum intake manifold. However, the heads and intake manifold were redesigned for better air flow,{{Citation needed|date=March 2014}} the cylinder block was stiffened,{{Citation needed|date=March 2014}} and the flat-tappets of the Generation I and II engines were replaced with roller tappets. This generation also came standard with sequential multiport fuel injection and structural oil pan.

=3.1 L=

==L82==

The L82 ("M-code") was an updated, SFI replacement for the MPFI LH0, produced from 1993 through 1999. It featured a structural oil pan, a stiffer redesigned engine block, sequential fuel injection, and revised aluminum heads. Output for the L82 was up {{cvt|20|hp|kW|0}}, over the previous Gen II LH0, to {{cvt|160|hp|kW|0}} at 5200 rpm and {{cvt|185|lbft|Nm|0}} at 4000 rpm. Compression ratio for the L82 was 9.5:1 and the bore measured {{cvt|89|mm|in}}, while the stroke was {{cvt|84|mm|in|2}} giving it a displacement of {{cvt|3135|cc|L CID|order=flip|1}}.

Applications:

==LG8==

File:3100 V6 Engine.JPG

The LG8 ("J-code") was an updated version of the engine that displaced {{cvt|3135|cc|L|order=flip|1}}.{{Cite web|url=http://media.gm.com/division/2003_prodinfo/03_powertrain/03_car_engine/index.html|archiveurl=https://web.archive.org/web/20040427171000/http://media.gm.com/division/2003_prodinfo/03_powertrain/03_car_engine/index.html|url-status=dead|title=Site Maintenance|archivedate=April 27, 2004|website=media.gm.com}} It still had an iron block, two-valve pushrod aluminum heads, and full sequential port fuel injection. The LG8 also featured a new intake manifold and numerous changes to improve parts-sharing with the larger-displacement LA1 3400. Emissions were improved with secondary air injection and it earned LEV status. The engine featured a {{cvt|89|mm|in}} bore and a {{cvt|84|mm|in|2}} stroke and a 9.6:1 compression ratio. It produced {{cvt|170|-|175|hp|kW|0}} and {{cvt|190|-|195|lbft|Nm|0}}. The LG8 was built in Ramos Arizpe, Coahuila, Mexico, and Tonawanda, New York.

Applications:

=3.4 L=

==LA1==

The LA1 or 3400 ("E-code") was a larger-bore version of the L82. It was first used on the 1996 U-platform minivans.{{Citation needed|date=March 2014}} It displaces {{cvt|3350|cc|L cuin|1}} and has a {{cvt|92x84|mm|in|2}} bore and stroke with a 9.5:1 compression ratio. Emissions are controlled via a catalytic converter and exhaust gas recirculation. Fuel shut-off is at 6000 rpm. Starting around 2000, most vehicles have been equipped with GM's Engine Oil Life Monitor. This engine was assembled at both Tonawanda engine and the Mexican Ramos Arizpe engine plant.{{cite web|url=http://media.gm.com/division/2005_prodinfo/powertrain/engines/05_car_engine_specs.html#la1 |title=GM Powertrain Car Engines 2005 |publisher=Media.gm.com |access-date=March 5, 2014 |archive-url = https://web.archive.org/web/20080325093634/http://media.gm.com/division/2005_prodinfo/powertrain/engines/05_car_engine_specs.html#la1 |archive-date = March 25, 2008}}

class=wikitable
HorsepowerTorqueApplicationsDyno chart
{{cvt|170|hp|kW|0}} at 4700 rpm{{cvt|200|lbft|Nm|0}} at 4000 rpm{{ubl |Pontiac Grand Am|Oldsmobile Alero}}[http://archives.media.gm.com/division/2005_prodinfo/powertrain/2005%20HPT%20Library/60%20Degree%20V6/2005_34L_LA1_Grand_Am.pdf link] {{Webarchive|url=https://web.archive.org/web/20150902221136/https://archives.media.gm.com/division/2005_prodinfo/powertrain/2005%20HPT%20Library/60%20Degree%20V6/2005_34L_LA1_Grand_Am.pdf |date=2015-09-02 }}
{{cvt|175|hp|kW|0}} at 4700 rpmrowspan=2|{{cvt|205|lbft|Nm|0}} at 4000 rpm{{ubl |Pontiac Grand Am GT}}[http://archives.media.gm.com/division/2005_prodinfo/powertrain/2005%20HPT%20Library/60%20Degree%20V6/2005_34L_LA1_Grand_AM_GT.pdf link] {{Webarchive|url=https://web.archive.org/web/20150902221107/https://archives.media.gm.com/division/2005_prodinfo/powertrain/2005%20HPT%20Library/60%20Degree%20V6/2005_34L_LA1_Grand_AM_GT.pdf |date=2015-09-02 }}
{{cvt|180|hp|kW|0}} at 5200 rpm{{ubl |Chevrolet Impala|Chevrolet Monte Carlo}}{{ubl | [http://archives.media.gm.com/division/2005_prodinfo/powertrain/2005%20HPT%20Library/60%20Degree%20V6/2005_34L_LA1_Impala.pdf link]|[http://archives.media.gm.com/division/2005_prodinfo/powertrain/2005%20HPT%20Library/60%20Degree%20V6/2005_34L_LA1_monte_carlo.pdf link]}}
{{cvt|185|hp|kW|0}} at 5200 rpm{{cvt|210|lbft|Nm|0}} at 4000 rpm{{ubl |Chevrolet Venture|Pontiac Montana|Pontiac Aztek|Buick Rendezvous|Oldsmobile Silhouette}}

Applications:

Production in China by SAIC-GM

GM partnered with SAIC Motor to form SAIC-GM in 1997. This partnership manufactured variants of the 60° V6 engine in China, primarily for use in Chinese-market GM products. Chinese-built LNJ engines were used in the U.S. for the 2005–2009 Chevrolet Equinox and Pontiac Torrent.

= LB8 =

File:BUICK3.JPG

The LB8 is General Motors' base V6 in China. It is a derivative of the LG8 with the same {{cvt|89|mm|in|1}} bore and a shorter {{cvt|66.7|mm|in|1}} stroke for {{cvt|2490|cc|L|order=flip|1}}. It remains an iron block with pushrods and an aluminum two-valve head. Power is {{cvt|145|hp|kW|0}} and {{cvt|155|lbft|Nm|0}}.

Applications:

= LW9 =

The LW9 is a larger version of the LB8 with an {{cvt|80|mm|in|1}} stroke for {{cvt|2986|cc|L|order=flip|1}}. Power is {{cvt|170|hp|kW|0}} and torque is {{cvt|185|lbft|Nm|0}}.

Applications:

= LNJ =

An updated version of the Generation III 3400 engine. It includes a new block, intake manifold, oil pan, engine cover, and fuel system, as well as electronic throttle control.{{cite web|url=https://www.enginebuildermag.com/2011/03/rebuilding-the-chevy-3-4l3-5l-engine/|title=Rebuilding the Chevy 3.4L/3.5L Engine|date=18 March 2011}} It was built in China and shipped to Canada for installation in the Chevrolet Equinox and Pontiac Torrent. The LNJ makes {{cvt|185|hp|kW|0}} and {{cvt|210|lbft|Nm|0}}.{{cite web|url=http://media.gm.com/us/pontiac/en/product_services/r_cars/r_c_torrent/08index.html |title=GM Media Online: Pontiac |publisher=Media.gm.com |date=2007-08-01 |access-date=2009-06-19 |url-status=dead |archive-url=https://archive.today/20081009032533/http://media.gm.com/us/pontiac/en/product_services/r_cars/r_c_torrent/08index.html |archive-date=October 9, 2008 }}

Applications:

References

{{Reflist}}

  • Road and Track Magazine, April 1989. (1989-1990 Turbo Grand Prix performance figures)
  • 1995 Corsica/Beretta Service Manual, 1994, General Motors Corporation (Gen III/L82 Engine's usage in Corsica/Beretta)