General transcription factor
{{Short description|Class of protein transcription factors}}
File:Transcription Factors.svg
General transcription factors (GTFs), also known as basal transcriptional factors, are a class of protein transcription factors that bind to specific sites (promoter) on DNA to activate transcription of genetic information from DNA to messenger RNA. GTFs, RNA polymerase, and the mediator (a multi-protein complex) constitute the basic transcriptional apparatus that first bind to the promoter, then start transcription.{{cite book| last1 = Pierce| first1 = Benjamin A.| title = Genetics a conceptual approach| url = https://archive.org/details/geneticsconceptu00pier_130| url-access = limited| edition = 4th| date = 2012| publisher = W.H. Freeman| location = New York| isbn = 978-1-4292-3250-0| pages = [https://archive.org/details/geneticsconceptu00pier_130/page/n387 364]–367 }} GTFs are also intimately involved in the process of gene regulation, and most are required for life.{{cite journal | last1=Dillon|first1=Niall | title = Gene regulation and large-scale chromatin organization in the nucleus | journal = Chromosome Research | volume = 14 | issue = 1 | pages = 117–26 | year = 2006 | pmid = 16506101 | doi = 10.1007/s10577-006-1027-8 |s2cid=28667905 }}
A transcription factor is a protein that binds to specific DNA sequences (enhancer or promoter), either alone or with other proteins in a complex, to control the rate of transcription of genetic information from DNA to messenger RNA by promoting (serving as an activator) or blocking (serving as a repressor) the recruitment of RNA polymerase.{{cite journal | last1= Latchman|first1= David S. | title = Transcription factors: an overview | journal = The International Journal of Biochemistry & Cell Biology | volume = 29 | issue = 12 | pages = 1305–12 | date = December 1997 | pmid = 9570129 | doi = 10.1016/S1357-2725(97)00085-X | pmc = 2002184 }}{{cite journal | last1 = Karin|first1=M. | title = Too many transcription factors: positive and negative interactions | journal = The New Biologist | volume = 2 | issue = 2 | pages = 126–31 | date = February 1990 | pmid = 2128034 }}{{cite journal | last1 = Roeder|first1=Robert G. | title = The role of general initiation factors in transcription by RNA polymerase II | journal = Trends in Biochemical Sciences | volume = 21 | issue = 9 | pages = 327–35 | date = September 1996 | pmid = 8870495 | doi = 10.1016/S0968-0004(96)10050-5 }}{{cite journal | last1 = Nikolov|first1=D.B.|last2=Burley|first2=S.K.| title = RNA polymerase II transcription initiation: A structural view| journal = Proceedings of the National Academy of Sciences of the United States of America| volume = 94 | issue = 1 | pages= 15–22 | year = 1997| doi = 10.1073/pnas.94.1.15 |pmid = 8990153| pmc = 33652|bibcode=1997PNAS...94...15N|doi-access=free}}{{cite journal | last1 = Lee|first1=Tong Ihn|last2= Young|first2= Richard A.| title = Transcription of eukaryotic protein-coding genes | journal = Annual Review of Genetics | volume = 34 | issue = 1 | pages = 77–137 | year = 2000 | pmid = 11092823 | doi = 10.1146/annurev.genet.34.1.77 }} As a class of protein, general transcription factors bind to promoters along the DNA sequence or form a large transcription preinitiation complex to activate transcription. General transcription factors are necessary for transcription to occur.{{cite book | last1 = Weinzierl | first1 = Robert O.J. | title = Mechanisms of Gene Expression: Structure, Function and Evolution of the Basal Transcriptional Machinery | date = 1999 | publisher = Imperial College Press | location = London | isbn = 978-1-86094-126-9 | url-access = registration | url = https://archive.org/details/mechanismsofgene0000wein }}{{cite journal | last1 = Reese|first1= Joseph C.| title = Basal transcription factors | journal = Current Opinion in Genetics & Development | volume = 13 | issue = 2 | pages = 114–8 | date = April 2003 | pmid = 12672487 | doi = 10.1016/S0959-437X(03)00013-3 }}{{cite journal | last1=Shilatifard|first1= Ali|last2= Conaway|first2= Ronald C.|last3= Conaway|first3= Joan Weliky | title = The RNA polymerase II elongation complex | journal = Annual Review of Biochemistry | volume = 72 | issue = 1 | pages = 693–715 | year = 2003 | pmid = 12676794 | doi = 10.1146/annurev.biochem.72.121801.161551 }}
Types
In bacteria, transcription initiation requires an RNA polymerase and a single GTF: sigma factor.
File:Preinitiation complex.png
In archaea and eukaryotes, transcription initiation requires an RNA polymerase and a set of multiple GTFs to form a transcription preinitiation complex. Transcription initiation by eukaryotic RNA polymerase II involves the following GTFs:{{cite journal | last1 = Orphanides|first1= George|last2=Lagrange|first2=Thierry|last3=Reinberg|first3= Danny| title = The general transcription factors of RNA polymerase II | journal = Genes & Development | volume = 10 | issue = 21 | pages = 2657–83 | date = November 1996 | pmid = 8946909 | doi = 10.1101/gad.10.21.2657 | doi-access = free }}{{open access}}
- TFIIA – stabilizes the interaction between the TATA box and TFIID/TATA binding protein (TBP)
- TFIIB – recognizes the B recognition element (BRE) in promoters
- TFIID – binds to TBP and recognizes TBP associated factors (TAFs), also adds promoter selectivity
- TFIIE – attracts and regulates TFIIH
- TFIIF – stabilizes RNA polymerase interaction with TBP and TFIIB; helps attract TFIIE and TFIIH
- TFIIH – unwinds DNA at the transcription start point, phosphorylates Ser5 of the RNA polymerase CCTD, releases RNA polymerase from the promoter
Function and mechanism
= In bacteria =
{{main|Sigma factor}}
A sigma factor is a protein needed only for initiation of RNA synthesis in bacteria.{{cite journal | last1= Gruber|first1= Tanja M.| last2=Gross|first2= Carol A. | title = Multiple sigma subunits and the partitioning of bacterial transcription space | journal = Annual Review of Microbiology | volume = 57 | pages = 441–66 | date = October 2003 | pmid = 14527287 | doi = 10.1146/annurev.micro.57.030502.090913}} Sigma factors provide promoter recognition specificity to the RNA polymerase (RNAP) and contribute to DNA strand separation, then dissociating from the RNA polymerase core enzyme following transcription initiation.{{cite journal |last1=Borukhov |first1=Sergei |last2=Nudler |first2=Evgeny |title=RNA polymerase holoenzyme: structure, function and biological implications. |journal=Current Opinion in Microbiology |date=April 2003 |volume=6 |issue=2 |pages=93–100 |doi=10.1016/S1369-5274(03)00036-5 |pmid=12732296 |issn=1369-5274}} The RNA polymerase core associates with the sigma factor to form RNA polymerase holoenzyme. Sigma factor reduces the affinity of RNA polymerase for nonspecific DNA while increasing specificity for promoters, allowing transcription to initiate at correct sites. The core enzyme of RNA polymerase has five subunits (protein subunits) (~400 kDa).{{cite journal | last1 = Ebright|first1= Richard H. |authorlink1=Richard H. Ebright| title = RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II | journal = Journal of Molecular Biology | volume = 304 | issue = 5 | pages = 687–98 | date = December 2000 | pmid = 11124018 | doi = 10.1006/jmbi.2000.4309 }} Because of the RNA polymerase association with sigma factor, the complete RNA polymerase therefore has 6 subunits: the sigma subunit-in addition to the two alpha (α), one beta (β), one beta prime (β'), and one omega (ω) subunits that make up the core enzyme(~450 kDa). In addition, many bacteria can have multiple alternative σ factors. The level and activity of the alternative σ factors are highly regulated and can vary depending on environmental or developmental signals.{{ cite book |last1= Chandrangsu|first1= Pete| last2=Helmann |first2=John D. | date = March 2014 | chapter = Sigma factors in gene expression | title = Encyclopedia of Life Sciences | publisher = John Wiley & Sons Ltd | location = Chichester | doi = 10.1002/9780470015902.a0000854.pub3 | isbn = 978-0-470-01590-2 }}
= In archaea and eukaryotes =
{{main|Transcription preinitiation complex}}
The transcription preinitiation complex is a large complex of proteins that is necessary for the transcription of protein-coding genes in eukaryotes and archaea. It attaches to the promoter of the DNA (e.i., TATA box) and helps position the RNA polymerase II to the gene transcription start sites, denatures the DNA, and then starts transcription.{{cite journal |last1=Kornberg |first1=Roger D. |title=The molecular basis of eukaryotic transcription |journal=Proceedings of the National Academy of Sciences of the United States of America |date=7 August 2007 |volume=104 |issue=32 |pages=12955–61 |doi=10.1073/pnas.0704138104 |pmid=17670940 |pmc=1941834|bibcode=2007PNAS..10412955K |doi-access=free }}{{cite journal |last1=Kim |first1=Tae-Kyung |last2=Lagrange |first2=Thierry |last3=Wang |first3=Yuh-Hwa |last4=Griffith |first4=Jack D. |last5=Reinberg |first5=Danny |last6=Ebright |first6=Richard H. |authorlink6=Richard H. Ebright |title=Trajectory of DNA in the RNA polymerase II transcription preinitiation complex |journal=Proceedings of the National Academy of Sciences of the United States of America |date=11 November 1997 |volume=94 |issue=23 |pages=12268–73 |doi=10.1073/pnas.94.23.12268 |pmid=9356438 |pmc=24903|bibcode=1997PNAS...9412268K |doi-access=free }}{{cite journal | last1=Kim |first1=Tae-Kyung |last2=Ebright|first2= Richard H.|last3= Reinberg |first3=Danny | title = Mechanism of ATP-dependent promoter melting by transcription factor IIH | journal = Science | volume = 288 | issue = 5470 | pages = 1418–22 | date = May 2000 | pmid = 10827951 | doi = 10.1126/science.288.5470.1418 | authorlink2 = Richard H. Ebright |bibcode=2000Sci...288.1418K }}
== Transcription preinitiation complex assembly ==
The assembly of transcription preinitiation complex follows these steps:
- TATA binding protein (TBP), a subunit of TFIID (the largest GTF) binds to the promoter (TATA box), creating a sharp bend in the promoter DNA. Then the TBP-TFIIA interactions recruit TFIIA to the promoter.
- TBP-TFIIB interactions recruit TFIIB to the promoter. RNA polymerase II and TFIIF assemble to form the Polymerase II complex. TFIIB helps the Pol II complex bind correctly.
- TFIIE and TFIIH then bind to the complex and form the transcription preinitiation complex. TFIIA/B/E/H leave once RNA elongation begins. TFIID will stay until elongation is finished.
- Subunits within TFIIH that have ATPase and helicase activity create negative superhelical tension in the DNA. This negative superhelical tension causes approximately one turn of DNA to unwind and form the transcription bubble.
- The template strand of the transcription bubble engages with the RNA polymerase II active site, then RNA synthesis starts.
References
{{Reflist}}
External links
- {{MeshName|General+Transcription+Factors}}
- [https://www.nlm.nih.gov/cgi/mesh/2011/MB_cgi?mode=&index=18578&field=all&HM=&II=&PA=&form=&input= Holoenzymes] at the US National Library of Medicine Medical Subject Headings
- [https://www.youtube.com/watch?v=SMtWvDbfHLo DNA Transcription YouTube Video]
{{Cell signaling}}
{{Transcription factors|g2}}
{{DEFAULTSORT:General Transcription Factor}}