Generalized Cohen–Macaulay ring

{{Short description|Local ring in mathematics}}

In algebra, a generalized Cohen–Macaulay ring is a commutative Noetherian local ring (A, \mathfrak{m}) of Krull dimension d > 0 that satisfies any of the following equivalent conditions:{{harvnb|Herrmann|Orbanz|Ikeda|1988|loc=Theorem 37.4.}}{{harvnb|Herrmann|Orbanz|Ikeda|1988|loc=Theorem 37.10.}}

  • For each integer i = 0, \dots, d - 1, the length of the i-th local cohomology of A is finite:
  • :\operatorname{length}_A(\operatorname{H}^i_{\mathfrak{m}}(A)) < \infty.
  • \sup_Q (\operatorname{length}_A(A/Q) - e(Q)) < \infty where the sup is over all parameter ideals Q and e(Q) is the multiplicity of Q.
  • There is an \mathfrak{m}-primary ideal Q such that for each system of parameters x_1, \dots, x_d in Q, (x_1, \dots, x_{d-1}) : x_d = (x_1, \dots, x_{d-1}) : Q.
  • For each prime ideal \mathfrak{p} of \widehat{A} that is not \mathfrak{m} \widehat{A}, \dim \widehat{A}_{\mathfrak{p}} + \dim \widehat{A}/\mathfrak{p} = d and \widehat{A}_{\mathfrak{p}} is Cohen–Macaulay.

The last condition implies that the localization A_\mathfrak{p} is Cohen–Macaulay for each prime ideal \mathfrak{p} \ne \mathfrak{m}.

A standard example is the local ring at the vertex of an affine cone over a smooth projective variety. Historically, the notion grew up out of the study of a Buchsbaum ring, a Noetherian local ring A in which \operatorname{length}_A(A/Q) - e(Q) is constant for \mathfrak{m}-primary ideals Q; see the introduction of.{{harvnb|Trung|1986}}

Notes

{{reflist}}

References

  • {{citation |first1=Manfred |last1=Herrmann |first2=Ulrich |last2=Orbanz |first3=Shin |last3=Ikeda | title=Equimultiplicity and Blowing Up : an Algebraic Study with an Appendix by B. Moonen | year=1988 | isbn=3-642-61349-7 | oclc=1120850112 |publisher=Springer Verlag |location=Berlin }}
  • {{cite journal |first=Ngô Viêt |last=Trung |title=Toward a theory of generalized Cohen-Macaulay modules |journal=Nagoya Mathematical Journal | publisher=Duke University Press | year=1986 |volume=102 |issue=none |pages=1–49 |doi=10.1017/S0027763000000416 | oclc=670639276 | url=http://projecteuclid.org/euclid.nmj/1118780407 }}

Category:Ring theory

{{algebra-stub}}