Generalized uncertainty principle

{{Short description|Physics generalization}}

The generalized uncertainty principle (GUP) is a proposed extension of the Heisenberg uncertainty principle that incorporates potential effects of gravitational interactions into quantum mechanical systems. It emerges from several approaches to quantum gravity, including string theory, loop quantum gravity, and quantum geometry, and suggests the existence of a minimum measurable length, typically associated with the Planck scale.

A commonly used formulation of the GUP is:

:\Delta x \Delta p \geq \frac{\hbar}{2} + \beta \Delta p^2,

where \Delta x and \Delta p represent the uncertainties in position and momentum, \hbar is the reduced Planck constant, and \beta is a parameter related to the minimal length scale. This modification implies that position measurements cannot be made with arbitrary precision, as there exists a fundamental lower bound to spatial resolution. The concept is motivated by the expectation that classical notions of spacetime may break down at extremely small scales, such as the Planck length.{{cite journal | arxiv=1203.6191 | doi=10.12942/lrr-2013-2 | title=Minimal Length Scale Scenarios for Quantum Gravity | year=2013 | last1=Hossenfelder | first1=Sabine | journal=Living Reviews in Relativity | volume=16 | issue=1 | page=2 | doi-access=free | pmid=28179841 | pmc=5255898 | bibcode=2013LRR....16....2H }}{{cite journal | doi=10.1142/S0217732399001462 | title=On Gravity and the Uncertainty Principle | year=1999 | last1=Adler | first1=Ronald J. | last2=Santiago | first2=David I. | journal=Modern Physics Letters A | volume=14 | issue=20 | pages=1371–1381 | arxiv=gr-qc/9904026 | bibcode=1999MPLA...14.1371A | s2cid=23960215 }}

Several forms of the GUP have been proposed in the literature, varying in mathematical structure and underlying theoretical assumptions, depending on the specific model of quantum gravity being considered.{{cite journal | last1=Snyder | first1=Hartland S. | doi=10.1103/PhysRev.71.38 | title=Quantized Space-Time | journal=Phys. Rev. | volume=71 | pages=38–41 | date=1 January 1947 | issue=1 | bibcode=1947PhRv...71...38S }}{{cite journal | last1=Amati | first1=D. | last2=Ciafaloni | first2=M. | last3=Veneziano | first3=G. | doi=10.1016/0370-2693(89)91366-X | title=Can spacetime be probed below the string size? | year=1989 | journal=Physics Letters B | volume=216 | issue=1–2 | pages=41–47 | bibcode=1989PhLB..216...41A | url=http://cds.cern.ch/record/191788/files/198811126.pdf }}{{cite journal | last1=Garay | first1=L. J. | doi=10.1142/S0217751X95000085 | title=Quantum gravity and minimum length | year=1995 | journal=International Journal of Modern Physics A | volume=10 | issue=2 | pages=145–166 | arxiv=gr-qc/9403008 | bibcode=1995IJMPA..10..145G }}{{cite journal | last1=Scardigli | first1=F. | doi=10.1016/S0370-2693(99)00167-7 | title=Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment | year=1999 | journal=Physics Letters B | volume=452 | issue=1–2 | pages=39–44 | arxiv=hep-th/9904025 | bibcode=1999PhLB..452...39S }}{{cite journal | last1=Brau | first1=F. | doi=10.1088/0305-4470/32/44/308 | title=Minimal Length Uncertainty Relation and Hydrogen Atom | year=1999 | journal=Journal of Physics A: Mathematical and General | volume=32 | issue=44 | pages=7691–7696 | arxiv=quant-ph/9905033 | bibcode=1999JPhA...32.7691B }}{{cite journal | last1=Kempf | first1=A. | last2=Mangano | first2=G. | last3=Mann | first3=R. B. | doi=10.1103/PhysRevD.52.1108| title=Hilbert space representation of the minimal length uncertainty relation | year=1995 | journal=Physical Review D | volume=52 | issue=2 | pages=1108–1118 | pmid=10019328 | arxiv=hep-th/9412167 | bibcode=1995PhRvD..52.1108K }}{{cite journal | last1=Maggiore | first1=M.| doi=10.1016/0370-2693(93)91401-8 | title=A Generalized Uncertainty Principle in Quantum Gravity | year=1993 | journal=Physics Letters B | volume=304 | issue=1–2 | pages=65–69 | arxiv=hep-th/9301067 | bibcode=1993PhLB..304...65M}}

{{cite journal | last1=Capozziello | first1=S. | last2=Lambiase | first2=G. | last3=Scarpetta | first3=G. | doi=10.1023/A:1003634814685 | title=The Generalized Uncertainty Principle from Quantum Geometry | year=1999 | journal=International Journal of Theoretical Physics | volume=39 | issue=1 | pages=15–22 }}{{cite journal | last1=Todorinov | first1=V. | last2=Bosso | first2=P. | last3=Das | first3=S. | doi=10.1016/j.aop.2019.03.014 | title=Relativistic Generalized Uncertainty Principle | year=2019 | journal=Annals of Physics | volume=405 | pages=92–100 | arxiv=1810.11761 | bibcode=2019AnPhy.405...92T }}{{cite journal | last1=Ali | first1=A. F. | last2=Das | first2=S. | last3=Vagenas | first3=E. C. | doi=10.1016/j.physletb.2009.06.061 | title=Discreteness of Space from the Generalized Uncertainty Principle | year=2009 | journal=Physics Letters B | volume=678 | issue=5 | pages=497–499 | arxiv=0906.5396 | bibcode=2009PhLB..678..497A }}

Observable consequences

The GUP's phenomenological and experimental implications have been examined across low and high-energy contexts, encompassing atomic systems,{{Cite journal |last1=Ali |first1=Ahmed Farag |last2=Das |first2=Saurya |last3=Vagenas |first3=Elias C. |date=2011-08-03 |title=Proposal for testing quantum gravity in the lab |url=https://journals.aps.org/prd/abstract/10.1103/PhysRevD.84.044013 |journal=Physical Review D |volume=84 |issue=4 |pages=044013 |doi=10.1103/PhysRevD.84.044013 |arxiv=1107.3164|bibcode=2011PhRvD..84d4013A }}{{Cite journal |last1=Das |first1=Saurya |last2=Vagenas |first2=Elias C. |date=2008-11-25 |title=Universality of Quantum Gravity Corrections |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.221301 |journal=Physical Review Letters |volume=101 |issue=22 |pages=221301 |doi=10.1103/PhysRevLett.101.221301 |pmid=19113472 |arxiv=0810.5333|bibcode=2008PhRvL.101v1301D }} quantum optical systems,{{Cite journal |last1=Pikovski |first1=Igor |last2=Vanner |first2=Michael R. |last3=Aspelmeyer |first3=Markus |last4=Kim |first4=M. S. |last5=Brukner |first5=Časlav |date=May 2012 |title=Probing Planck-scale physics with quantum optics |url=https://www.nature.com/articles/nphys2262 |journal=Nature Physics |language=en |volume=8 |issue=5 |pages=393–397 |doi=10.1038/nphys2262 |issn=1745-2481 |arxiv=1111.1979|bibcode=2012NatPh...8..393P }} gravitational bar detectors,{{Cite journal |last1=Marin |first1=Francesco |last2=Marino |first2=Francesco |last3=Bonaldi |first3=Michele |last4=Cerdonio |first4=Massimo |last5=Conti |first5=Livia |last6=Falferi |first6=Paolo |last7=Mezzena |first7=Renato |last8=Ortolan |first8=Antonello |last9=Prodi |first9=Giovanni A. |last10=Taffarello |first10=Luca |last11=Vedovato |first11=Gabriele |last12=Vinante |first12=Andrea |last13=Zendri |first13=Jean-Pierre |date=February 2013 |title=Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables | doi-access=free | url=https://www.nature.com/articles/nphys2503.pdf |journal=Nature Physics |language=en |volume=9 |issue=2 |pages=71–73 |doi=10.1038/nphys2503 |bibcode=2013NatPh...9...71M |issn=1745-2481}} gravitational decoherence,{{Cite journal |last1=Petruzziello |first1=Luciano |last2=Illuminati |first2=Fabrizio |date=2021-07-22 |title=Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale | doi-access=free | url=https://www.nature.com/articles/s41467-021-24711-7.pdf |journal=Nature Communications |language=en |volume=12 |issue=1 |pages=4449 |arxiv=2011.01255 |doi=10.1038/s41467-021-24711-7 |issn=2041-1723 |pmc=8298405 |pmid=34294717|bibcode=2021NatCo..12.4449P }} and macroscopic harmonic oscillators,{{Cite journal |last1=Bawaj |first1=Mateusz |last2=Biancofiore |first2=Ciro |last3=Bonaldi |first3=Michele |last4=Bonfigli |first4=Federica |last5=Borrielli |first5=Antonio |last6=Di Giuseppe |first6=Giovanni |last7=Marconi |first7=Lorenzo |last8=Marino |first8=Francesco |last9=Natali |first9=Riccardo |last10=Pontin |first10=Antonio |last11=Prodi |first11=Giovanni A. |last12=Serra |first12=Enrico |last13=Vitali |first13=David |last14=Marin |first14=Francesco |date=2015-06-19 |title=Probing deformed commutators with macroscopic harmonic oscillators | doi-access=free | url=https://www.nature.com/articles/ncomms8503.pdf |journal=Nature Communications |language=en |volume=6 |issue=1 |pages=7503 |doi=10.1038/ncomms8503 |issn=2041-1723 |pmc=4557370 |pmid=26088965|arxiv=1411.6410 |bibcode=2015NatCo...6.7503B }} further extending to composite particles,{{Cite journal |last1=Kumar |first1=Shreya P. |last2=Plenio |first2=Martin B. |date=2020-08-06 |title=On quantum gravity tests with composite particles | doi-access=free | url=https://www.nature.com/articles/s41467-020-17518-5.pdf |journal=Nature Communications |language=en |volume=11 |issue=1 |pages=3900 |arxiv=1908.11164 |doi=10.1038/s41467-020-17518-5 |issn=2041-1723 |pmc=7413341 |pmid=32764700|bibcode=2020NatCo..11.3900K }} and astrophysical systems.{{Cite journal |last1=Moradpour |first1=H |last2=Ziaie |first2=A H |last3=Ghaffari |first3=S |last4=Feleppa |first4=F |date=2019-09-01 |title=The generalized and extended uncertainty principles and their implications on the Jeans mass | doi-access=free | url=https://academic.oup.com/mnrasl/article-pdf/488/1/L69/28930239/slz098.pdf |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=488 |issue=1 |pages=L69–L74 |arxiv=1907.12940 |doi=10.1093/mnrasl/slz098 |issn=1745-3925}}{{clarify|reason=What are the implications?|date=May 2025}}

References