Genetically modified soybean#Roundup Ready Soybean

{{short description|Soybean that has had DNA introduced into it using genetic engineering techniques}}

{{inadequate lede|date=November 2015}}

{{Genetic engineering sidebar}}

A genetically modified soybean is a soybean (Glycine max) that has had DNA introduced into it using genetic engineering techniques.{{cite book|author=Roller, Sibel |author2=Susan Harlander|title=Genetic Modification in the Food Industry |chapter=Modern food biotechnology: Overview of key issues |editor=Roller, Sibel |editor2=Susan Harlander|publisher=London: Blackie|year=1998|pages=5–26|doi=10.1007/978-1-4615-5815-6_1|isbn=978-1-4613-7665-1}}{{rp|5}} In 1996, the first genetically modified soybean was introduced to the U.S. by Monsanto. In 2014, 90.7 million hectares of GM soybeans were planted worldwide, making up 82% of the total soybeans cultivation area.{{cite web|title=Pocket K No. 16: Global Status of Commercialized Biotech/GM Crops in 2014|url=http://www.isaaa.org/resources/publications/pocketk/16/|website=isaaa.org|publisher=International Service for the Acquisition of Agri-biotech Applications|access-date=23 February 2016}}

Examples of transgenic soybeans

The genetic makeup of a soybean gives it a wide variety of uses, thus keeping it in high demand. First, manufacturers only wanted to use transgenics to be able to grow more soybeans at a minimal cost to meet this demand, and to fix any problems in the growing process, but they eventually found they could modify the soybean to contain healthier components, or even focus on one aspect of the soybean to produce in larger quantities. These phases became known as the first and second generation of genetically modified (GM) foods. As Peter Celec describes, "benefits of the first generation of GM foods were oriented towards the production process and companies, the second generation of GM foods offers, on contrary, various advantages and added value for the consumer", including "improved nutritional composition or even therapeutic effects."{{cite journal|author=Celec P|display-authors=etal|title=Biological and Biomedical Aspects of Genetically Modified Food|journal=Biomedicine & Pharmacotherapy|volume=59|issue=10|date=Dec 2005|pages=531–40|doi=10.1016/j.biopha.2005.07.013|pmid=16298508}}{{rp|533}}

= Roundup Ready Soybean=

Roundup Ready soybeans (The first variety was also known as GTS 40-3-2 (OECD UI: MON-04032-6)) are a series of genetically engineered varieties of glyphosate-resistant soybeans produced by Monsanto.

Glyphosate kills plants by interfering with the synthesis of the essential amino acids phenylalanine, tyrosine and tryptophan. These amino acids are called "essential" because animals cannot make them; only plants and micro-organisms can make them and animals obtain them by eating plants.{{cite web|publisher=Purdue University, Department of Horticulture and Landscape Architecture|work=Metabolic Plant Physiology Lecture notes|title=Aromatic amino acid biosynthesis, The shikimate pathway – synthesis of chorismate|url=http://www.hort.purdue.edu/rhodcv/hort640c/aromat/ar00007.htm|date=1 October 2009|access-date=2 September 2014|archive-date=19 December 2007|archive-url=https://web.archive.org/web/20071219165155/http://www.hort.purdue.edu/rhodcv/hort640c/aromat/ar00007.htm}}

Plants and microorganisms make these amino acids with an enzyme that only plants and lower organisms have, called 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).{{cite journal |doi=10.1016/0006-291X(80)90547-1 |title=The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase |year=1980 |last1=Steinrücken |first1=H.C. |last2=Amrhein |first2=N. |journal=Biochemical and Biophysical Research Communications |volume=94 |issue=4 |pages=1207–12 |pmid=7396959}} EPSPS is not present in animals, which instead obtain aromatic amino acids from their diet.{{cite journal |doi=10.1073/pnas.0603638103 |title=Molecular basis for the herbicide resistance of Roundup Ready crops |year=2006 |last1=Funke |first1=Todd |first2=Huijong |last2=Han |last3=Healy-Fried |first3=Martha L. |last4=Fischer |first4=Markus |last5=Schönbrunn|first5=Ernst |journal=Proceedings of the National Academy of Sciences |volume=103 |issue=35 |jstor=30050705 |bibcode=2006PNAS..10313010F |pmid=16916934 |pages=13010–5 |pmc=1559744|doi-access=free }}

Roundup Ready Soybeans express a version of EPSPS from the CP4 strain of the bacteria Agrobacterium tumefaciens, expression of which is regulated by an enhanced 35S promoter (E35S) from cauliflower mosaic virus (CaMV), a chloroplast transit peptide (CTP4) coding sequence from Petunia hybrida, and a nopaline synthase (nos 3') transcriptional termination element from Agrobacterium tumefaciens.{{cite web|url=http://www.isaaa.org/gmapprovaldatabase/events/default.asp?EventID=94 |title=GM Approval Database |access-date=2011-08-05 |publisher=International Service for the Acquisition of Agri-biotech Applications |archive-url=https://web.archive.org/web/20110930182016/http://www.isaaa.org/gmapprovaldatabase/events/default.asp?EventID=94 |archive-date=2011-09-30 }} The plasmid with EPSPS and the other genetic elements mentioned above was inserted into soybean germplasm with a gene gun by scientists at Monsanto and Asgrow.Homrich MS et al (2012) [http://www.scielo.br/scielo.php?pid=S1415-47572012000600015&script=sci_arttext Soybean genetic transformation: a valuable tool for the functional study of genes and the production of agronomically improved plants] Genet. Mol. Biol. vol.35 no.4 supl.1Padgette SR, et al (1995) [https://www.crops.org/publications/cs/abstracts/35/5/CS0350051451?access=0&view=pdf Development, identification, and characterization of a glyphosate-tolerant soybean line]. Crop Sci 35:1451-1461. The patent on the first generation of Roundup Ready soybeans expired in March 2015.

==History==

First approved commercially in the United States during 1994, GTS 40-3-2 was subsequently introduced to Canada in 1995, Japan and Argentina in 1996, Uruguay in 1997, Mexico and Brazil in 1998, and South Africa in 2001. GMO Soybean is also approved by the United Nations in 1999.

The Chinese Ministry of Agriculture announced on April 29, 2022, the approval of the drought-tolerant event, called [https://www.tridge.com/news/china-approves-drought-tolerant-hb4-soybeans-2 HB4].

==Detection==

GTS 40-3-2 can be detected using both nucleic acid and protein analysis methods.{{cite journal | title = GMDD: a database of GMO detection methods | journal = BMC Bioinformatics | date = 2008-06-04 | first = Wei | last = Dong |author2=Litao Yang1 |author3=Kailin Shen |author4=Banghyun Kim |author5=Gijs A. Kleter |author6=Hans J.P. Marvin |author7=Rong Guo |author8=Wanqi Liang |author9=Dabing Zhang | volume = 9 | issue = 260 | pages = 4–7| url= | pmid=18522755 | doi=10.1186/1471-2105-9-260 | pmc=2430717 | doi-access = free }}{{cite web|url=http://gmdd.shgmo.org/event/view/41 |title=GMO Detection method Database (GMDD) |access-date=2011-08-05 |work=GMO Detection Laboratory |publisher=Shanghai Jiao Tong University |archive-url=https://web.archive.org/web/20120328131714/http://gmdd.shgmo.org/event/view/41 |archive-date=2012-03-28 }}

=Generic GMO soybeans=

Following expiration of Monsanto's patent on the first variety of glyphosate-resistant Roundup Ready soybeans, development began on glyphosate-resistant generic soybeans. The first variety, developed at the University of Arkansas Division of Agriculture, came to the market in 2015. With a slightly lower yield than newer Monsanto varieties, it costs about 1/2 as much, and seeds can be saved for subsequent years. According to its innovator, it is adapted to conditions in Arkansas. Several other varieties are being bred by crossing the original variety of Roundup Ready soybeans with other soybean varieties.{{cite news|author1=Fred Miller, University of Arkansas Division of Agriculture Communications|title=Arkansas: 'Look Ma, No Tech Fees.' Round Up Ready Soybean Variety Released|url=http://agfax.com/2014/12/03/arkansas-look-ma-no-tech-fees-round-up-ready-soybean-variety-released/|access-date=July 30, 2015|work=AGFAX|date=December 3, 2014|quote=Monsanto's patent on the first generation of Roundup Ready products expires in March 2015....|archive-date=July 23, 2015|archive-url=https://web.archive.org/web/20150723051731/http://agfax.com/2014/12/03/arkansas-look-ma-no-tech-fees-round-up-ready-soybean-variety-released/|url-status=dead}}{{cite news|author1=Antonio Regalado|title=Monsanto no longer controls one of the biggest innovations in the history of agriculture.|url=http://www.technologyreview.com/news/539746/as-patents-expire-farmers-plant-generic-gmos/|access-date=July 30, 2015|work=MIT Technology Review|date=July 30, 2015}}{{Cite web |title=Article Details |url=https://twasp.info/journal/aA5890a4/methodological-comparison-of-genomic-selection-for-several-traits-in-arabidopsis-and-soybean |access-date=2022-05-14 |website=twasp.info |language=en}}

{{anchor|MON87701|MON89788}}

= HB4 Soybean =

HB4 soybean, whose technical name is IND-ØØ41Ø-5 soybean, is a variety produced through genetic engineering to respond efficiently to drought conditions.

The HB4 soybean was created to more efficiently tolerate abiotic stress such as drought or hypersaline conditions. These characteristics result in increased yield compared to unmodified varieties. In 2015, HB4 soybean was approved in Argentina, then in Brazil (May 2019), the United States (August 2019), Paraguay (2019),{{Cite web |date=2019-11-13 |title=Verdeca gets Paraguay's approval for HB4 soybeans |url=https://www.nsagriculture.com/news/verdeca-paraguay-hb4-soybeans/ |access-date=2022-09-22 |website=NS Agriculture |language=en-US |archive-date=2022-09-22 |archive-url=https://web.archive.org/web/20220922051229/https://www.nsagriculture.com/news/verdeca-paraguay-hb4-soybeans/ |url-status=dead }} Canada (2021){{Cite web |title=Canada Approves HB4 Drought Tolerant Soybeans |url=https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=18816 |access-date=2022-09-22 |website=Crop Biotech Update |language=en}} and the People's Republic of China (2022).{{Cite web |title=China Approves Drought Tolerant HB4® Soybeans |url=https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=19441 |access-date=2022-09-22 |website=Crop Biotech Update |language=en}}

=Stacked traits=

Monsanto developed a glyphosate-resistant soybean that also expresses Cry1Ac protein from Bacillus thuringiensis and the glyphosate-resistance gene, which completed the Brazilian regulatory process in 2010. This is a cross of two events, MON87701 x MON89788.Staff, Monsanto. August, 2009. [http://www.gmo-compass.org/pdf/regulation/soybean/MON87701xMON89788_soybean_application_food_feed.pdf Application for authorization to place on the market MON 87701 × MON 89788 soybean in the European Union, according to Regulation (EC) No 1829/2003 on genetically modified food and feed] {{webarchive|url=https://web.archive.org/web/20120905233938/http://www.gmo-compass.org/pdf/regulation/soybean/MON87701xMON89788_soybean_application_food_feed.pdf |date=2012-09-05 }} Linked from the GMO Compass page on the [http://www.gmo-compass.org/eng/gmo/db/147.docu.html MON87701 x MON89788] {{webarchive|url=https://web.archive.org/web/20131109152621/http://www.gmo-compass.org/eng/gmo/db/147.docu.html |date=2013-11-09 }} event.[http://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=6565 Monsanto's Bt Roundup Ready 2 Yield Soybeans Approved for Planting in Brazil - Crop Biotech Update (8/27/2010) | ISAAA.org/KC]

=Genetic modification to improve soybean oil=

Soybean has been genetically modified to improve the quality of soy oil. Soy oil has a fatty acid profile that makes it susceptible to oxidation, which makes it rancid, which limits its usefulness in the food industry.{{cite journal | last1 = Clemente | first1 = Tom E. | last2 = Cahoon | first2 = Edgar B. | year = 2009 | title = Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content | journal = Plant Physiology | volume = 151 | issue = 3| pages = 1030–40 | doi=10.1104/pp.109.146282 | pmid=19783644 | pmc=2773065}}{{rp|1030}} Genetic modifications increased the amount of oleic acid and stearic acid and decreased the amount of linolenic acid.{{rp|1031}} By silencing, or knocking out, the delta 9 and delta 12 desaturases.{{rp|1032}}Anthony, 196-7 DuPont Pioneer created a high oleic fatty acid soybean with levels of oleic acid greater than 80%, and started marketing it in 2010.{{rp|1038}}

Regulation

{{main|Regulation of the release of genetic modified organisms}}

The regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the development and release of genetically modified crops. There are differences in the regulation of GM crops between countries, with some of the most marked differences occurring between the US and Europe. In the US, the American Soybean Association (ASA) is generally in favor of allowing new GM soy varieties. The ASA especially supports separate regulation of transgenics and all other techniques.{{cite magazine | url=http://soygrowers.com/wp-content/uploads/2019/03/AmericanSoybean_Winter2018_Fnl_WEB.pdf | magazine=American Soybean | date=Winter 2017–2018 | volume=5 | number=3 | publisher=American Soybean Association | pages=1–22 | quote-page=8 | quote=USDA's withdrawal... | title=ASA Responds to Withdrawal of Biotech Rule}} Soy beans are allowed a Maximum Residue Limit of glyphosate of {{convert|20|mg/kg|mg/lb}}{{cite web| url = http://www.fao.org/fao-who-codexalimentarius/standards/pestres/pesticide-detail/en/?p_id=158| archive-url = https://web.archive.org/web/20161019150440/http://www.fao.org/fao-who-codexalimentarius/standards/pestres/pesticide-detail/en/?p_id=158| archive-date = 2016-10-19| title = CODEX Alimentarius: Pesticide Detail}} for international trade.{{Cite web | url=https://www.wto.org/english/thewto_e/coher_e/wto_codex_e.htm | title=WTO | the WTO and the FAO/WHO Codex Alimentarius}} Regulation varies in a given country depending on the intended use of the products of the genetic engineering. For example, a crop not intended for food use is generally not reviewed by authorities responsible for food safety.Wesseler, J. and N. Kalaitzandonakes (2011): Present and Future EU GMO policy. In Arie Oskam, Gerrit Meesters and Huib Silvis (eds.), EU Policy for Agriculture, Food and Rural Areas. Second Edition, pp. 23-323 – 23-332. Wageningen: Wageningen Academic PublishersBeckmann, V., C. Soregaroli, J. Wesseler (2011): Coexistence of genetically modified (GM) and non-modified (non GM) crops: Are the two main property rights regimes equivalent with respect to the coexistence value? In "Genetically modified food and global welfare" edited by Colin Carter, GianCarlo Moschini and Ian Sheldon, pp 201-224. Volume 10 in Frontiers of Economics and Globalization Series. Bingley, UK: Emerald Group Publishing Romania authorised GM soy for cultivation and use but then imposed a ban upon entry into the EU in 2007. This resulted in an immediate withdrawal of 70% of the soybean hectares in 2008 and a trade deficit of 117.4m for purchase of replacement products. Farmer sentiment was very much in favour of relegalisation.{{cite journal | s2cid=55001415 | last1=Hera | first1=Cristian | first2=Ana | last2=Popescu | title=Biotechnology and its role for a sustainable agriculture | journal=Romanian Journal of Economic Forecasting | volume=14 | issue=2 | date=2011 | pages=26–43}}

Controversy

{{Main|Genetically modified food controversies}}

There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction. Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.

A 2010 study found that in the United States, GM crops also provide a number of environmental benefits.{{cite news |author=Andrew Pollack |newspaper=The New York Times |date=April 13, 2010 |url=https://www.nytimes.com/2010/04/14/business/energy-environment/14crop.html?pagewanted=all |title=Study Says Overuse Threatens Gains From Modified Crops}}{{cite book |publisher=National Academies Press | date=2010-07-26 | doi=10.17226/12804 | url=http://www.nap.edu/read/12804/chapter/1 | access-date=2021-04-12 | isbn=978-0-309-14708-8 |title=Impact of Genetically Engineered Crops on Farm Sustainability in the United States }}{{cite web|url=http://www.nationalacademies.org/news/2010/04/genetically-engineered-crops-benefit-many-farmers--but-the-technology-needs-proper-management-to-remain-effective|title=Genetically Engineered Crops Benefit Many Farmers, but the Technology Needs Proper Management to Remain Effective|date=2010-04-13|website=US National Research Council|publisher=US National Academy of Sciences}}

Critics have objected to GM crops on several grounds, including ecological concerns, and economic concerns raised by the fact that these organisms are subject to intellectual property law. GM crops also are involved in controversies over GM food with respect to whether food produced from GM crops are safe and whether GM crops are needed to address the world's food needs. See the genetically modified food controversies article for discussion of issues about GM crops and GM food. These controversies have led to litigation, international trade disputes, and protests, and to restrictive legislation in most countries.Wesseler, J. (ed.) (2005): Environmental Costs and Benefits of Transgenic Crops. Dordrecht, NL: Springer Press

See also

References

{{reflist|2|refs=

{{Cite journal|url=https://www.pps.net/cms/lib/OR01913224/Centricity/Domain/3337/peer%20reviewed%20meta%20study%20on%20GMOs%20copy.pdf|title=An overview of the last 10 years of genetically engineered crop safety research|first1=Alessandro|last1=Nicolia|first2=Alberto|last2=Manzo|first3=Fabio|last3=Veronesi|first4=Daniele|last4=Rosellini|journal=Critical Reviews in Biotechnology|volume=34|issue=1|date=2013|pages=77–88|doi=10.3109/07388551.2013.823595|pmid=24041244|s2cid=9836802|quote=We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.

The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.}}

{{Cite web|url=http://www.fao.org/docrep/006/Y5160E/y5160e10.htm#P3_1651The|title=State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops|publisher=Food and Agriculture Organization of the United Nations|access-date=August 30, 2019|quote=Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU).}}

{{Cite journal|title=Plant Genetics, Sustainable Agriculture and Global Food Security|first=Pamela|last=Ronald|journal=Genetics|date=May 1, 2011|volume=188|issue=1|pages=11–20|doi=10.1534/genetics.111.128553|pmid=21546547|pmc=3120150|quote="There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002). Both the U.S. National Research Council and the Joint Research Centre (the European Union's scientific and technical research laboratory and an integral part of the European Commission) have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004; European Commission Joint Research Centre 2008). These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment (European Commission Directorate-General for Research and Innovation 2010)."|doi-access=free}}

But see also:

{{Cite journal|url=http://gaiapresse.ca/images/nouvelles/28563.pdf|title=A literature review on the safety assessment of genetically modified plants|first1=José L.|last1=Domingo|first2=Jordi Giné|last2=Bordonaba|journal=Environment International|date=2011|volume=37|issue=4|pages=734–742|doi=10.1016/j.envint.2011.01.003|pmid=21296423|bibcode=2011EnInt..37..734D |quote=In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.}}

{{Cite journal|title=An Illusory Consensus behind GMO Health Assessment|first=Sheldon|last=Krimsky|s2cid=40855100|journal=Science, Technology, & Human Values|volume=40|issue=6|pages=883–914|doi=10.1177/0162243915598381|date=2015|quote=I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.}}

And contrast:

{{Cite journal|title=Published GMO studies find no evidence of harm when corrected for multiple comparisons|first1=Alexander Y.|last1=Panchin|first2=Alexander I.|last2=Tuzhikov|journal=Critical Reviews in Biotechnology|volume = 37|issue = 2|pages = 213–217|date=January 14, 2016|issn=0738-8551|doi=10.3109/07388551.2015.1130684|pmid = 26767435|s2cid=11786594|quote=Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.

The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.}}

and

{{Cite journal|title=Governing GMOs in the USA: science, law and public health|first1=Y.T.|last1=Yang|first2=B.|last2=Chen|journal=Journal of the Science of Food and Agriculture|volume=96|issue = 4|pages=1851–1855|date=2016|doi=10.1002/jsfa.7523|pmid=26536836|bibcode=2016JSFA...96.1851Y |quote=It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011). Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.

Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.}}

{{Cite web|url=http://www.aaas.org/sites/default/files/AAAS_GM_statement.pdf|title=Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods|publisher=American Association for the Advancement of Science|date=October 20, 2012|access-date=August 30, 2019|quote="The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques."}}

{{Cite web|url=https://www.aaas.org/sites/default/files/AAAS_GM_statement.pdf|title=AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"|first=Ginger|last=Pinholster|publisher=American Association for the Advancement of Science|date=October 25, 2012|access-date=August 30, 2019}}

{{Cite book|url=http://ec.europa.eu/research/biosociety/pdf/a_decade_of_eu-funded_gmo_research.pdf|title=A decade of EU-funded GMO research (2001–2010)|publisher=Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union.|doi=10.2777/97784|isbn=978-92-79-16344-9|access-date=August 30, 2019|date=2010|author1=European Commission. Directorate-General for Research}}

{{Cite web|url=https://www.isaaa.org/kc/Publications/htm/articles/Position/ama.htm|title=AMA Report on Genetically Modified Crops and Foods (online summary)|publisher=American Medical Association|date=January 2001|access-date=August 30, 2019|quote="A report issued by the scientific council of the American Medical Association (AMA) says that no long-term health effects have been detected from the use of transgenic crops and genetically modified foods, and that these foods are substantially equivalent to their conventional counterparts. (from online summary prepared by ISAAA)" "Crops and foods produced using recombinant DNA techniques have been available for fewer than 10 years and no long-term effects have been detected to date. These foods are substantially equivalent to their conventional counterparts."}}{{Cite web|url=http://www.ama-assn.org/resources/doc/csaph/a12-csaph2-bioengineeredfoods.pdf|archive-url=https://web.archive.org/web/20120907023039/http://www.ama-assn.org/resources/doc/csaph/a12-csaph2-bioengineeredfoods.pdf|title=REPORT 2 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-12): Labeling of Bioengineered Foods|publisher=American Medical Association|date=2012|access-date=August 30, 2019|archive-date=2012-09-07|quote=Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature.}}

{{Cite web|url=http://www.loc.gov/law/help/restrictions-on-gmos/usa.php#Opinion|title=Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion|publisher=Library of Congress|date=June 30, 2015|access-date=August 30, 2019|quote="Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs."}}

{{Cite book|url=http://www.nap.edu/read/23395/chapter/7#149|title=Genetically Engineered Crops: Experiences and Prospects|publisher=The National Academies of Sciences, Engineering, and Medicine (US)|page=149|date=2016|access-date=August 30, 2019|doi=10.17226/23395|pmid=28230933|isbn=978-0-309-43738-7|quote="Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts."|last1=National Academies Of Sciences|first1=Engineering|author2=Division on Earth Life Studies|author3=Board on Agriculture Natural Resources|author4=Committee on Genetically Engineered Crops: Past Experience Future Prospects}}

{{Cite web|url=https://www.who.int/foodsafety/areas_work/food-technology/faq-genetically-modified-food/en/|title=Frequently asked questions on genetically modified foods|publisher=World Health Organization|access-date=August 30, 2019|quote=Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.}}

{{Cite journal|title=Codex guidelines for GM foods include the analysis of unintended effects|first=Alexander G.|last=Haslberger|journal=Nature Biotechnology|volume=21|issue=7|pages=739–741|date=2003|doi=10.1038/nbt0703-739|pmid=12833088|s2cid=2533628|quote=These principles dictate a case-by-case premarket assessment that includes an evaluation of both direct and unintended effects.}}

Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle:

{{Cite web|url=http://www.argenbio.org/adc/uploads/pdf/bma.pdf|title=Genetically modified foods and health: a second interim statement|publisher=British Medical Association|date=March 2004|access-date=August 30, 2019|quote=In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.

When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.

Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.

The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.}}

{{Cite web|url=http://www.pewinternet.org/2015/01/29/public-and-scientists-views-on-science-and-society/|title=Public and Scientists' Views on Science and Society|first1=Cary|last1=Funk|first2=Lee|last2=Rainie|publisher=Pew Research Center|date=January 29, 2015|access-date=August 30, 2019|quote=The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points.|archive-date=January 9, 2019|archive-url=https://web.archive.org/web/20190109232405/http://www.pewinternet.org/2015/01/29/public-and-scientists-views-on-science-and-society/|url-status=dead}}

{{Cite journal|title=Public views on GMOs: deconstructing the myths|first=Claire|last=Marris|journal=EMBO Reports|volume=2|issue=7|pages=545–548|date=2001|doi=10.1093/embo-reports/kve142|pmid=11463731|pmc=1083956}}

{{Cite web|url=http://csec.lancs.ac.uk/archive/pabe/docs/pabe_finalreport.doc|title=Public Perceptions of Agricultural Biotechnologies in Europe|date=December 2001|author=Final Report of the PABE research project|publisher=Commission of European Communities|archive-url=https://web.archive.org/web/20170525042822/http://csec.lancs.ac.uk/archive/pabe/docs/pabe_finalreport.doc |archive-date=2017-05-25|access-date=August 30, 2019}}

{{Cite journal|url=http://yoelinbar.net/papers/gmo_absolute.pdf|title=Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States|first1=Sydney E.|last1=Scott|first2=Yoel|last2=Inbar|first3=Paul|last3=Rozin|journal=Perspectives on Psychological Science|date=2016|volume=11|issue=3|pages=315–324|doi=10.1177/1745691615621275|pmid=27217243|s2cid=261060}}

{{Cite web|url=http://www.loc.gov/law/help/restrictions-on-gmos/|title=Restrictions on Genetically Modified Organisms|publisher=Library of Congress|date=June 9, 2015|access-date=August 30, 2019}}

{{Cite web|url=http://www.americanbar.org/content/newsletter/publications/aba_health_esource_home/aba_health_law_esource_1302_bashshur.html|title=FDA and Regulation of GMOs|first=Ramona|last=Bashshur|publisher=American Bar Association|date=February 2013|archive-url=https://web.archive.org/web/20180621044554/https://www.americanbar.org/content/newsletter/publications/aba_health_esource_home/aba_health_law_esource_1302_bashshur.html|archive-date=June 21, 2018|access-date=August 30, 2019}}

{{Cite magazine|url=https://time.com/4060476/eu-gmo-crops-european-union-opt-out/|title=Over Half of E.U. Countries Are Opting Out of GMOs|first=Alexandra|last=Sifferlin|magazine=Time|date=October 3, 2015|access-date=August 30, 2019}}

{{Cite web|url=http://www.cfr.org/agricultural-policy/regulation-gmos-europe-united-states-case-study-contemporary-european-regulatory-politics/p8688|title=The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics|first1=Diahanna|last1=Lynch|first2=David|last2=Vogel|publisher=Council on Foreign Relations|date=April 5, 2001|access-date=August 30, 2019|archive-url=https://web.archive.org/web/20160929200540/http://www.cfr.org/agricultural-policy/regulation-gmos-europe-united-states-case-study-contemporary-european-regulatory-politics/p8688|archive-date=September 29, 2016}}

}}

Further reading

  • {{cite book|author=Anthony, Kinney J. |author2=Susan Knowlton|title=Genetic Modification in the Food Industry |chapter=Designer oils: The high oleic acid soybean |editor=Roller, Sibel |editor2=Susan Harlander|publisher=London: Blackie|year= 1998|pages=193–213|doi=10.1007/978-1-4615-5815-6_10|isbn=978-1-4613-7665-1}}
  • {{cite journal | last1 = Deng | first1 = Ping-Jian |display-authors=etal | year = 2008 | title = The Definition, Source, Manifestation and Assessment of Unintended Effects in Genetically Modified Plants | journal = Journal of the Science of Food and Agriculture | volume = 88 | issue = 14| pages = 2401–2413 | doi=10.1002/jsfa.3371| bibcode = 2008JSFA...88.2401D }}
  • {{cite journal | last1 = Domingo | first1 = Jose' L | year = 2007 | title = Toxicity Studies of Genetically Modified Plants: A Review of the Published Literature | journal = Critical Reviews in Food Science and Nutrition | volume = 47 | issue = 8| pages = 721–733 | doi=10.1080/10408390601177670 | pmid=17987446| citeseerx = 10.1.1.662.4707 | s2cid = 15329669 }}
  • {{cite web|title=Genetically Modified Soybean|work=GMO Compass|publisher=Federal Ministry of Education and Research|date=3 Dec 2008|url=http://www.gmo-compass.org/eng/grocery_shopping/crops/19.genetically_modified_soybean.html|archive-url=https://web.archive.org/web/20170202010421/http://www.gmo-compass.org/eng/grocery_shopping/crops/19.genetically_modified_soybean.html|archive-date=2017-02-02}}
  • {{cite journal|author=Kuiper, Harry A.|display-authors=etal|title=Assessment of the Food Safety Issues Related to Genetically Modified Foods|journal=Plant Journal|volume= 27|issue=6|date=September 2001|pages= 503–28|doi=10.1046/j.1365-313X.2001.01119.x|pmid=11576435|doi-access=free}}