Gibbons–Hawking space
{{Technical|date=December 2012}}
In mathematical physics, a Gibbons–Hawking space, named after Gary Gibbons and Stephen Hawking, is essentially a hyperkähler manifold with an extra U(1) symmetry.{{cite web|url=http://www.physics.ohio-state.edu/~mathur/faq2.pdf|title=The fuzzball paradigm for black holes: FAQ|last=Mathur|first=Samir D.|date=22 January 2009|publisher=Ohio State University|page=20|accessdate=16 April 2012}} (In general, Gibbons–Hawking metrics are a subclass of hyperkähler metrics.{{cite book|last=Wang|first=Chih-Wei|title=Five Dimensional Microstate Geometries|url=https://books.google.com/books?id=Q-8vohfZZPMC&pg=PA67|accessdate=16 April 2012|year=2007|isbn=978-0-549-39022-0|page=67}}) Gibbons–Hawking spaces, especially ambipolar ones,{{cite book|last=Bellucci|first=Stefano|title=Supersymmetric Mechanics: Attractors and Black Holes in Supersymmetric Gravity|url=https://books.google.com/books?id=eQMz40csKqsC&pg=PA5|accessdate=16 April 2012|year=2008|publisher=Springer|isbn=978-3-540-79522-3|page=5}} find an application in the study of black hole microstate geometries.{{cite journal|last=Bena|first=Iosif |author2=Nikolay Bobev |author3=Stefano Giusto |author4=Clement Ruefa |author5=Nicholas P. Warner|date=March 2011|title=An infinite-dimensional family of black-hole microstate geometries|journal=Journal of High Energy Physics|publisher=International School for Advanced Studies.!|volume=3|issue=22|pages=22 |doi=10.1007/JHEP03(2011)022|bibcode=2011JHEP...03..022B |arxiv=1006.3497 }}
See also
References
{{Reflist}}
{{Stephen Hawking}}
{{DEFAULTSORT:Gibbons-Hawking space}}