Glaeser's continuity theorem
{{short description|Characterizes the continuity of the derivative of the square roots of C2 functions}}
In mathematical analysis, Glaeser's continuity theorem is a characterization of the continuity of the derivative of the square roots of functions of class . It was introduced in 1963 by Georges Glaeser,{{cite journal
| last1=Glaeser | first1=Georges | authorlink1=Georges Glaeser
| title=Racine carrée d'une fonction différentiable
| journal=Annales de l'Institut Fourier
| volume=13
| issue=2
| date=1963
| pages=203–210
| doi=10.5802/aif.146 | doi-access=free | url=http://www.numdam.org/item?id=AIF_1963__13_2_203_0}} and was later simplified by Jean Dieudonné.{{cite journal
| last1=Dieudonné | first1=Jean | authorlink1=Jean Dieudonné
| title=Sur un théorème de Glaeser
| journal=Journal d'Analyse Mathématique
| volume=23
| date=1970
| pages=85–88
| zbl=0208.07503
| doi=10.1007/BF02795491 | doi-access=free}}
The theorem states: Let be a function of class in an open set U contained in , then is of class in U if and only if its partial derivatives of first and second order vanish in the zeros of f.
References
{{reflist}}