Goss zeta function
In the field of mathematics, the Goss zeta function, named after David Goss, is an analogue of the Riemann zeta function for function fields. {{harvtxt|Sheats|1998}} proved that it satisfies an analogue of the Riemann hypothesis. {{harvtxt|Kapranov|1995}} proved results for a higher-dimensional generalization of the Goss zeta function.
References
- {{Citation | last1=Goss | first1=David | title=Basic structures of function field arithmetic | publisher=Springer-Verlag | location=Berlin, New York | series=Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] | isbn=978-3-540-61087-8 |mr=1423131 | year=1996 | volume=35}}
- {{Citation | last1=Kapranov | first1=Mikhail | authorlink=Mikhail Kapranov | title= A higher-dimensional generalization of the Goss zeta function | journal= Journal of Number Theory | volume=50 |issue=2 | year=1995 | pages=363–375 | doi=10.1006/jnth.1995.1030| doi-access=free }}
- {{Citation | last1=Sheats | first1=Jeffrey T. | title=The Riemann hypothesis for the Goss zeta function for Fq
[T] | doi=10.1006/jnth.1998.2232 |mr=1630979 | year=1998 | journal=Journal of Number Theory | issn=0022-314X | volume=71 | issue=1 | pages=121–157| arxiv=math/9801158 }}
{{Algebra-stub}}