Gottlieb polynomials

{{Short description|Number group/set}}

{{Orphan|date=July 2022}}

In mathematics, Gottlieb polynomials are a family of discrete orthogonal polynomials given by

:\displaystyle \ell_n(x,\lambda) = e^{-n\lambda}\sum_k(1-e^\lambda)^k\binom{n}{k}\binom{x}{k} =e^{-n\lambda}{}_2F_1(-n,-x;1;1-e^\lambda)

{{cite journal| last1=Gottlieb | first1=M. J. | year=1938 | title=Concerning some polynomials orthogonal on a finite or enumerable set of points. | journal=American Journal of Mathematics | issn=0002-9327 | volume=60 | issue=2 | pages=453–458 | doi=10.2307/2371307 | jfm=64.0329.01 | jstor=2371307 }}

References

{{reflist}}

Further reading

  • {{Citation | last1=Rainville | first1=Earl D. | authorlink=Earl Rainville | title=Special functions | publisher=The Macmillan Co. | location=New York | mr=0107725 | year=1960}}

Category:Orthogonal polynomials

{{polynomial-stub}}