Grace–Walsh–Szegő theorem
{{Short description|Mathematical theorem about polynomials}}
In mathematics, the Grace–Walsh–Szegő coincidence theorem{{cite journal
| last1=Grace | first1=J. H. | authorlink1=John Hilton Grace
| title=The zeros of a polynomial
| journal=Mathematical Proceedings of the Cambridge Philosophical Society
| volume=11
| date=1902
| pages=352–357
| url=https://archive.org/details/proceedingscamb13socigoog/page/352/mode/2up}}{{cite journal
| last1=Brändén | first1=Petter
| last2=Wagner | first2=David G.
| title=A converse to the Grace–Walsh–Szegő theorem
| journal=Mathematical Proceedings of the Cambridge Philosophical Society
| date=August 2009
| volume=147
| issue=2
| pages=447–453
| doi=10.1017/S0305004109002424| arxiv=0809.3225
}} is a result named after John Hilton Grace, Joseph L. Walsh, and Gábor Szegő.
Statement
Suppose ƒ(z1, ..., zn) is a polynomial with complex coefficients, and that it is
- symmetric, i.e. invariant under permutations of the variables, and
- multi-affine, i.e. affine in each variable separately.
Let A be a circular region in the complex plane. If either A is convex or the degree of ƒ is n, then for every there exists such that
:
Notes and references
{{reflist}}
{{DEFAULTSORT:Grace-Walsh-Szego theorem}}
Category:Theorems in complex analysis
Category:Theorems about polynomials
{{mathanalysis-stub}}